scholarly journals Relativistic AGN jets – III. Synthesis of synchrotron emission from double-double radio galaxies

2020 ◽  
Vol 497 (3) ◽  
pp. 3638-3657
Author(s):  
S Walg ◽  
A Achterberg ◽  
S Markoff ◽  
R Keppens ◽  
O Porth

ABSTRACT The class of double-double radio galaxies (DDRGs) relates to episodic jet outbursts. How various regions and components add to the total intensity in radio images is less well known. In this paper, we synthesize synchrotron images for DDRGs based on special relativistic hydrodynamic simulations, making advanced approximations for the magnetic fields. We study the synchrotron images for three different radial jet profiles; ordered, entangled, or mixed magnetic fields; spectral ageing from synchrotron cooling; the contribution from different jet components; the viewing angle and Doppler (de-)boosting; and the various epochs of the evolution of the DDRG. To link our results to observational data, we adopt to J1835+6204 as a reference source. In all cases, the synthesized synchrotron images show two clear pairs of hotspots, in the inner and outer lobes. The best resemblance is obtained for the piecewise isochoric jet model, for a viewing angle of approximately ϑ ∼ −71°, i.e. inclined with the lower jet towards the observer, with predominantly entangled (≳70 per cent of the magnetic pressure) in turbulent, rather than ordered fields. The effects of spectral ageing become significant when the ratio of observation frequencies and cut-off frequency νobs/ν∞, 0 ≳ 10−3, corresponding to ∼3 × 102 MHz. For viewing angles ϑ ≲ |−30°|, a DDRG morphology can no longer be recognized. The second jets must be injected within ≲ 4 per cent of the lifetime of the first jets for a DDRG structure to emerge, which is relevant for active galactic nuclei feedback constraints.

1990 ◽  
Vol 140 ◽  
pp. 447-448
Author(s):  
P. Pismis ◽  
E. Moreno ◽  
A. Garcia-Barreto

The existence of non–steady phenomena, namely activity in the form of radial motions (outflow) of matter from the nuclei of galaxies is well established at present. Active Galactic Nuclei (AGN) constitute a topic of great interest and are intensively studied by all existing observational techniques. Conventionally objects classified as AGN span a range from quasars, radio galaxies to Seyferts 1 and 2. It appears, however, that there exist galaxies which exhibit somewhat milder activity which does not qualify their inclusion in the AGN group. The designation of MAGN (M for mildly) was suggested in the past (Pismis, 1986) to cover the less energetic nuclei. It may be reasonable to consider that active nuclei form a sequence, the difference along it being due to the energetics of the nuclei, from the most active quasars and radio galaxies down to the mildest ones like M31 or our Galaxy. The phenomenon underlying the activity may thus be universal, subject to the intrinsic energetics of the nuclei (Pismis, 1987).


2019 ◽  
Vol 489 (1) ◽  
pp. L58-L62
Author(s):  
Andrzej A Zdziarski

Abstract We study the effect of variable jet bulk Lorentz factors, i.e. either jet acceleration or deceleration, on partially synchrotron self-absorbed radio spectra from cores of radio-loud active galactic nuclei and black hole binaries in the hard state. In about a half of quasars and radio galaxies, their core radio spectra are observed to be soft, i.e. have the spectral index of α < 0. If they are emitted by jets with constant Lorentz factors, that softness implies deposition of large amounts of energy at large distances from the centre. We show here that such soft spectra can be explained without that energetic requirement by emission of jets with the Doppler factor increasing with the distance. This can happen for either jet acceleration or deceleration, depending on the jet viewing angle. We find our model can explain the quiescent radio to X-ray spectra of the BL Lac objects Mrk 421 and Mrk 501.


Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 18
Author(s):  
Dorit Glawion

The majority of the known extragalactic sky from TeV gamma-ray energies consists of blazars having plasma jets pointing in the direction of the line-of-sight, which results in a large Doppler boosting of their emission. Up to now, only six galaxies with a larger viewing angle have been detected in the TeV range. These objects also show fascinating properties, such as fast variability or spectral features and are called “radio galaxies”. The TeV radio galaxies provide a unique laboratory for studying key aspects of active galactic nuclei. This Special Issue of Galaxies targets these exciting objects.


2019 ◽  
Vol 622 ◽  
pp. A13 ◽  
Author(s):  
V. H. Mahatma ◽  
M. J. Hardcastle ◽  
W. L. Williams ◽  
P. N. Best ◽  
J. H. Croston ◽  
...  

Context. Double-double radio galaxies (DDRGs) represent a short but unique phase in the life-cycle of some of the most powerful radio-loud active galactic nuclei (RLAGN). These galaxies display large-scale remnant radio plasma in the intergalactic medium left behind by a past episode of active galactic nuclei (AGN) activity, and meanwhile, the radio jets have restarted in a new episode. The knowledge of what causes the jets to switch off and restart is crucial to our understanding of galaxy evolution, while it is important to know if DDRGs form a host galaxy dichotomy relative to RLAGN. Aims. The sensitivity and field of view of LOFAR enables the observation of DDRGs on a population basis rather than single-source observations. Using statistical comparisons with a control sample of RLAGN, we may obtain insights into the nature of DDRGs in the context of their host galaxies, where physical differences in their hosts compared to RLAGN as a population may allow us to infer the conditions that drive restarting jets. Methods. We utilised the LOFAR Two-Metre Sky Survey (LoTSS) DR1, using a visual identification method to compile a sample of morphologically selected candidate DDRGs, showing two pairs of radio lobes. To confirm the restarted nature in each of the candidate sources, we obtained follow-up observations with the Karl. G. Jansky Very Large Array (VLA) at higher resolution to observe the inner lobes or restarted jets, the confirmation of which created a robust sample of 33 DDRGs. We created a comparison sample of 777 RLAGN, matching the luminosity distribution of the DDRG sample, and compared the optical and infrared magnitudes and colours of their host galaxies. Results. We find that there is no statistically significant difference in the brightness of the host galaxies between double-doubles and single-cycle RLAGN. The DDRG and RLAGN samples also have similar distributions in WISE mid-infrared colours, indicating similar ages of stellar populations and dust levels in the hosts of DDRGs. We conclude that DDRGs and “normal” RLAGN are hosted by galaxies of the same type, and that DDRG activity is simply a normal part of the life cycle of RLAGN. Restarted jets, particularly for the class of low-excitation radio galaxies, rather than being a product of a particular event in the life of a host galaxy, must instead be caused by smaller scale changes, such as in the accretion system surrounding the black hole.


2019 ◽  
Vol 15 (S356) ◽  
pp. 247-251
Author(s):  
Biny Sebastian ◽  
Preeti Kharb ◽  
Christopher P. O’ Dea ◽  
Jack F. Gallimore ◽  
Stefi A. Baum ◽  
...  

AbstractThe role of starburst winds versus active galactic nuclei (AGN) jets/winds in the formation of the kiloparsec scale radio emission seen in Seyferts is not yet well understood. In order to be able to disentangle the role of various components, we have observed a sample of Seyfert galaxies exhibiting kpc-scale radio emission suggesting outflows, along with a comparison sample of starburst galaxies, with the EVLA B-array in polarimetric mode at 1.4 GHz and 5 GHz. The Seyfert galaxy NGC 2639, shows highly polarized secondary radio lobes, not observed before, which are aligned perpendicular to the known pair of radio lobes. The additional pair of lobes represent an older epoch of emission. A multi-epoch multi-frequency study of the starburst-Seyfert composite galaxy NGC 3079, reveals that the jet together with the starburst superwind and the galactic magnetic fields might be responsible for the well-known 8-shaped radio lobes observed in this galaxy. We find that many of the Seyfert galaxies in our sample show bubble-shaped lobes, which are absent in the starburst galaxies that do not host an AGN.


Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 24 ◽  
Author(s):  
José-María Martí

Numerical simulations have been playing a crucial role in the understanding of jets from active galactic nuclei (AGN) since the advent of the first theoretical models for the inflation of giant double radio galaxies by continuous injection in the late 1970s. In the almost four decades of numerical jet research, the complexity and physical detail of simulations, based mainly on a hydrodynamical/magneto-hydrodynamical description of the jet plasma, have been increasing with the pace of the advance in theoretical models, computational tools and numerical methods. The present review summarizes the status of the numerical simulations of jets from AGNs, from the formation region in the neighborhood of the supermassive central black hole up to the impact point well beyond the galactic scales. Special attention is paid to discuss the achievements of present simulations in interpreting the phenomenology of jets as well as their current limitations and challenges.


2020 ◽  
Vol 498 (3) ◽  
pp. 3870-3887
Author(s):  
G Musoke ◽  
A J Young ◽  
M Birkinshaw

ABSTRACT Numerical simulations play an essential role in helping us to understand the physical processes behind relativistic jets in active galactic nuclei. The large number of hydrodynamic codes available today enables a variety of different numerical algorithms to be utilized when conducting the simulations. Since many of the simulations presented in the literature use different combinations of algorithms it is important to quantify the differences in jet evolution that can arise due to the precise numerical schemes used. We conduct a series of simulations using the flash (magneto-)hydrodynamics code in which we vary the Riemann solver and spatial reconstruction schemes to determine their impact on the evolution and dynamics of the jets. For highly refined grids the variation in the simulation results introduced by the different combinations of spatial reconstruction scheme and Riemann solver is typically small. A high level of convergence is found for simulations using third-order spatial reconstruction with the Harten–Lax–Van-Leer with contact and Hybrid Riemann solvers.


1999 ◽  
Vol 194 ◽  
pp. 306-310
Author(s):  
Q. Yuan ◽  
J. Wu ◽  
K. Huang

This paper presents a test of the luminosity correlation of the X-ray selected radio-loud Active Galactic Nuclei (AGNs), based on a large sample constructed by combining our cross-identification of southern sky sources with the radio-loud sources in the northern hemisphere given by Brinkmann et al. (1995). All sources were detected both by the ROSAT All-Sky Survey and the radio surveys at 4.85 GHz. The broad band energy distribution confirms the presence of strong correlations between luminosities in the radio, optical, and X-ray bands which differ for quasars, seyferts, BL Lacs, and radio galaxies. The tight correlations between spectral indices αox and monochromatic luminosities at 5500 Å and 4.85 GHz are also shown.


1989 ◽  
Vol 134 ◽  
pp. 525-528
Author(s):  
T. J. Pearson ◽  
A. C. S. Readhead

Very Long Baseline Interferometry at radio wavelengths is the only technique available for imaging the central few parsecs of powerful radio galaxies and quasars. VLBI observations have shown that in many nuclei radio-emitting material is collimated into a jet on a scale less than a parsec and ejected at relativistic velocities. The interpretation of the observations is complicated by the relativistic motion, however: the images are dominated by those parts of the source that are moving almost directly towards the observer, and thus amplified by relativistic aberration. Nonetheless, the VLBI images are vital for understanding the nature of the central engine, the cause of the collimation, and the physics of the jets.


Sign in / Sign up

Export Citation Format

Share Document