scholarly journals Radio Galaxy Zoo: new giant radio galaxies in the RGZ DR1 catalogue

2020 ◽  
Vol 499 (1) ◽  
pp. 68-76
Author(s):  
H Tang ◽  
A M M Scaife ◽  
O I Wong ◽  
A D Kapińska ◽  
L Rudnick ◽  
...  

ABSTRACT In this paper, we present the identification of five previously unknown giant radio galaxies (GRGs) using Data Release 1 of the Radio Galaxy Zoo citizen science project and a selection method appropriate to the training and validation of deep learning algorithms for new radio surveys. We associate one of these new GRGs with the brightest cluster galaxy (BCG) in the galaxy cluster GMBCG J251.67741+36.45295 and use literature data to identify a further 13 previously known GRGs as BCG candidates, increasing the number of known BCG GRGs by $\gt 60$ per cent. By examining local galaxy number densities for the number of all known BCG GRGs, we suggest that the existence of this growing number implies that GRGs are able to reside in the centres of rich (∼1014 M⊙) galaxy clusters and challenges the hypothesis that GRGs grow to such sizes only in locally underdense environments.

2019 ◽  
Vol 15 (S356) ◽  
pp. 280-284
Author(s):  
Angela Bongiorno ◽  
Andrea Travascio

AbstractXDCPJ0044.0-2033 is one of the most massive galaxy cluster at z ∼1.6, for which a wealth of multi-wavelength photometric and spectroscopic data have been collected during the last years. I have reported on the properties of the galaxy members in the very central region (∼ 70kpc × 70kpc) of the cluster, derived through deep HST photometry, SINFONI and KMOS IFU spectroscopy, together with Chandra X-ray, ALMA and JVLA radio data.In the core of the cluster, we have identified two groups of galaxies (Complex A and Complex B), seven of them confirmed to be cluster members, with signatures of ongoing merging. These galaxies show perturbed morphologies and, three of them show signs of AGN activity. In particular, two of them, located at the center of each complex, have been found to host luminous, obscured and highly accreting AGN (λ = 0.4−0.6) exhibiting broad Hα line. Moreover, a third optically obscured type-2 AGN, has been discovered through BPT diagram in Complex A. The AGN at the center of Complex B is detected in X-ray while the other two, and their companions, are spatially related to radio emission. The three AGN provide one of the closest AGN triple at z > 1 revealed so far with a minimum (maximum) projected distance of 10 kpc (40 kpc). The discovery of multiple AGN activity in a highly star-forming region associated to the crowded core of a galaxy cluster at z ∼ 1.6, suggests that these processes have a key role in shaping the nascent Brightest Cluster Galaxy, observed at the center of local clusters. According to our data, all galaxies in the core of XDCPJ0044.0-2033 could form a BCG of M* ∼ 1012Mȯ hosting a BH of 2 × 108−109Mȯ, in a time scale of the order of 2.5 Gyrs.


2020 ◽  
Vol 499 (4) ◽  
pp. 5791-5805
Author(s):  
M Gendron-Marsolais ◽  
J Hlavacek-Larrondo ◽  
R J van Weeren ◽  
L Rudnick ◽  
T E Clarke ◽  
...  

ABSTRACT We present the first high-resolution 230–470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved have allowed the identification of previously unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyse complex radio sources harboured in the cluster. Two new distinct, narrowly collimated jets are visible in IC 310, consistent with a highly projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behaviour, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head–tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.


2018 ◽  
Vol 48 (4) ◽  
pp. 564-588 ◽  
Author(s):  
Dick Kasperowski ◽  
Thomas Hillman

In the past decade, some areas of science have begun turning to masses of online volunteers through open calls for generating and classifying very large sets of data. The purpose of this study is to investigate the epistemic culture of a large-scale online citizen science project, the Galaxy Zoo, that turns to volunteers for the classification of images of galaxies. For this task, we chose to apply the concepts of programs and antiprograms to examine the ‘essential tensions’ that arise in relation to the mobilizing values of a citizen science project and the epistemic subjects and cultures that are enacted by its volunteers. Our premise is that these tensions reveal central features of the epistemic subjects and distributed cognition of epistemic cultures in these large-scale citizen science projects.


2021 ◽  
Vol 508 (1) ◽  
pp. 1280-1295
Author(s):  
Elizabeth J Gonzalez ◽  
Cinthia Ragone-Figueroa ◽  
Carlos J Donzelli ◽  
Martín Makler ◽  
Diego García Lambas ◽  
...  

ABSTRACT We present a detailed study of the shapes and alignments of different galaxy cluster components using hydrodynamical simulations. We compute shape parameters from the dark matter (DM) distribution, the galaxy members and the intracluster light (ICL). We assess how well the DM cluster shape can be constrained by means of the identified galaxy member positions and the ICL. Further, we address the dilution factor introduced when estimating the cluster elongation using weak-lensing stacking techniques, which arises due to the misalignment between the total surface mass distribution and the distribution of luminous tracers. The dilution is computed considering the alignment between the DM and the brightest cluster galaxy, the galaxy members and the ICL. Our study shows that distributions of galaxy members and ICL are less spherical than the DM component, although both are well aligned with the semimajor axis of the latter. We find that the distribution of galaxy members hosted in more concentrated subhaloes is more elongated than the distribution of the DM. Moreover, these galaxies are better aligned with the DM component compared to the distribution of galaxies hosted in less concentrated subhaloes. We conclude that the positions of galaxy members can be used as suitable tracers to estimate the cluster surface density orientation, even when a low number of members is considered. Our results provide useful information for interpreting the constraints on the shapes of galaxy clusters in observational studies.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 108
Author(s):  
Simona Giacintucci ◽  
Tracy Clarke ◽  
Namir E. Kassim ◽  
Wendy Peters ◽  
Emil Polisensky

We present VLA Low-band Ionosphere and Transient Experiment (VLITE) 338 MHz observations of the galaxy cluster CL 0838+1948. We combine the VLITE data with Giant Metrewave Radio Telescope 610 MHz observations and survey data. The central galaxy hosts a 250 kpc source whose emission is dominated by two large lobes at low frequencies. At higher frequencies, a pair of smaller lobes (∼30 kpc) is detected within the galaxy optical envelope. The observed morphology is consistent with a restarted radio galaxy. The outer lobes have a spectral index αout=1.6, indicating that they are old, whereas the inner lobes have αinn=0.6, typical for an active source. Spectral modeling confirms that the outer emission is a dying source whose nuclear activity switched off not more than 110 Myr ago. Using archival Chandra X-ray data, we compare the radio and hot gas emission. We find that the active radio source is contained within the innermost and X-ray brightest region, possibly a galactic corona. Alternatively, it could be the remnant of a larger cool core whose outer layers have been heated by the former epoch of activity that has generated the outer lobes.


2019 ◽  
pp. 186-190
Author(s):  
Nicholas Mee

Frank Drake devised the Drake equation to estimate the number of advanced civilizations in the galaxy with the aim of gathering support for SETI (the Search for Extraterrestrial Intelligence). The earliest attempts to detect radio signals from extraterrestrials date back to the 1960s. Paul Allen has funded the Allen Telescope, Array which is dedicated to searching for such signals. When complete it will include 350 radio dishes. The citizen science project SETI@Home allows anyone with a home PC to participate in analysing the data amassed by the SETI project.


2020 ◽  
Vol 493 (1) ◽  
pp. 1120-1129
Author(s):  
Z Yan ◽  
N Raza ◽  
L Van Waerbeke ◽  
A J Mead ◽  
I G McCarthy ◽  
...  

ABSTRACT The location of a galaxy cluster’s centroid is typically derived from observations of the galactic and/or gas component of the cluster, but these typically deviate from the true centre. This can produce bias when observations are combined to study average cluster properties. Using data from the BAryons and HAloes of MAssive Systems (BAHAMAS) cosmological hydrodynamic simulations, we study this bias in both two and three dimensions for 2000 clusters over the 1013–1015 M⊙ mass range. We quantify and model the offset distributions between observationally motivated centres and the ‘true’ centre of the cluster, which is taken to be the most gravitationally bound particle measured in the simulation. We fit the cumulative distribution function of offsets with an exponential distribution and a Gamma distribution fit well with most of the centroid definitions. The galaxy-based centres can be seen to be divided into a mis-centred group and a well-centred group, with the well-centred group making up about $60{{\ \rm per\ cent}}$ of all the clusters. Gas-based centres are overall less scattered than galaxy-based centres. We also find a cluster-mass dependence of the offset distribution of gas-based centres, with generally larger offsets for smaller mass clusters. We then measure cluster density profiles centred at each choice of the centres and fit them with empirical models. Stacked, mis-centred density profiles fit to the Navarro–Frenk–White dark matter profile and Komatsu–Seljak gas profile show that recovered shape and size parameters can significantly deviate from the true values. For the galaxy-based centres, this can lead to cluster masses being underestimated by up to $10{{\ \rm per\ cent}}$.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Lawrence Rudnick ◽  
William Cotton ◽  
Kenda Knowles ◽  
Konstantinos Kolokythas

We present the unique and challenging case of a radio galaxy in Abell 3266 observed as part of the MeerKAT Galaxy Cluster Legacy Survey. It has quasi-periodic bright patches along the tail which connect to never-before-seen thin transverse extensions, which we call “ribs”, reaching up to ∼50 kpc from the central axis of the tail. At a distance of ∼400 kpc from the host (assuming the z=0.0594 redshift of Abell 3266) we found what appears to be a triple source with its own apparent host at a photometric redshift of 0.78. Mysteriously, the part of the tail far from the host and the triple are connected by a series of thin filaments, which we call “tethers”. The far tail, tethers and triple also have similar spectra and Faraday rotation measures, suggesting that there is only one—quite complicated—source, with a serendipitous background AGN in the triple. We look at possible causes for the “rib” and “tether” structures, and the emerging phenomena of intracluster medium filaments associated with radio galaxies.


2019 ◽  
Vol 629 ◽  
pp. A104 ◽  
Author(s):  
R. Gobat ◽  
E. Daddi ◽  
R. T. Coogan ◽  
A. M. C. Le Brun ◽  
F. Bournaud ◽  
...  

We present Atacama Large Millimetre Array and Atacama Compact Array observations of the Sunyaev-Zel’dovich effect in the z = 2 galaxy cluster Cl J1449+0856, an X-ray-detected progenitor of typical massive clusters in the present day Universe. While in a cleaned but otherwise untouched 92 GHz map of this cluster little to no negative signal is visible, careful subtraction of known sub-millimetre emitters in the uv plane reveals a decrement at 5σ significance. The total signal is −190 ± 36 μJy, with a peak offset by 5″–9″ (∼50 kpc) from both the X-ray centroid and the still-forming brightest cluster galaxy. A comparison of the recovered uv-amplitude profile of the decrement with different pressure models allows us to derive total mass constraints consistent with the ∼6 × 1013M⊙ estimated from X-ray data. Moreover, we find no strong evidence for a deviation of the pressure profile with respect to local galaxy clusters, although a slight tension at small-to-intermediate spatial scales suggests a flattened central profile, opposite to that seen in a cool core and possibly an AGN-related effect. This analysis of the lowest mass single SZ detection so far illustrates the importance of interferometers when observing the SZ effect in high-redshift clusters, the cores of which cannot be considered quiescent, such that careful subtraction of galaxy emission is necessary.


2019 ◽  
Vol 486 (1) ◽  
pp. L80-L84 ◽  
Author(s):  
Ruta Kale ◽  
Krishna M Shende ◽  
Viral Parekh

ABSTRACT Diffuse radio sources associated with the intra-cluster medium are direct probes of the cosmic ray electrons and magnetic fields. We report the discovery of a diffuse radio source in the galaxy cluster RXCJ0232.2–4420 (SPT-CL J0232–4421, z = 0.2836) using 606 MHz observations with the Giant Metrewave Radio Telescope. The diffuse radio source surrounds the Brightest Cluster Galaxy in the cluster-like typical radio mini-haloes. However the total extent of it is 550 × 800 kpc2, which is larger than mini-haloes and similar to that of radio haloes. The BCG itself is also a radio source with a marginally resolved core at 7 arcsec (30 kpc) resolution. We measure the 606 MHz flux density of the RH to be 52 ± 5 mJy. Assuming a spectral index of 1.3, the 1.4 GHz radio power is 4.5 × 1024 W Hz−1. The dynamical state of the cluster has been inferred to be 'relaxed’ and also as 'complex’, depending on the classification methods based on the morphology of the X-ray surface brightness. This system thus seems to be in the transition phase from a mini-halo to a radio halo.


Sign in / Sign up

Export Citation Format

Share Document