Resolved star formation in the metal-poor star-forming region Magellanic Bridge C

2020 ◽  
Vol 499 (2) ◽  
pp. 2534-2553
Author(s):  
Venu M Kalari ◽  
Monica Rubio ◽  
Hugo P Saldaño ◽  
Alberto D Bolatto

ABSTRACT Magellanic Bridge C (MB-C) is a metal-poor (∼1/5 Z⊙) low-density star-forming region located 59 kpc away in the Magellanic Bridge, offering a resolved view of the star formation process in conditions different to the Galaxy. From Atacama Large Millimetre Array CO (1–0) observations, we detect molecular clumps associated with candidate young stellar objects (YSOs), pre-main sequence (PMS) stars, and filamentary structure identified in far-infrared imaging. YSOs and PMS stars form in molecular gas having densities between 17 and 200 M⊙ pc−2, and have ages between ≲0.1 and 3 Myr. YSO candidates in MB -C have lower extinction than their Galactic counterparts. Otherwise, our results suggest that the properties and morphologies of molecular clumps, YSOs, and PMS stars in MB -C present no patent differences with respect to their Galactic counterparts, tentatively alluding that the bottleneck to forming stars in regions similar to MB-C is the conversion of atomic gas to molecular.

2019 ◽  
Vol 488 (3) ◽  
pp. 3904-3928 ◽  
Author(s):  
Ryan Leaman ◽  
Francesca Fragkoudi ◽  
Miguel Querejeta ◽  
Gigi Y C Leung ◽  
Dimitri A Gadotti ◽  
...  

ABSTRACT Stellar feedback plays a significant role in modulating star formation, redistributing metals, and shaping the baryonic and dark structure of galaxies – however, the efficiency of its energy deposition to the interstellar medium is challenging to constrain observationally. Here we leverage HST and ALMA imaging of a molecular gas and dust shell ($M_{\mathrm{ H}_2} \sim 2\times 10^{5}\, {\rm M}_{\odot }$) in an outflow from the nuclear star-forming ring of the galaxy NGC 3351, to serve as a boundary condition for a dynamical and energetic analysis of the outflowing ionized gas seen in our MUSE TIMER survey. We use starburst99 models and prescriptions for feedback from simulations to demonstrate that the observed star formation energetics can reproduce the ionized and molecular gas dynamics – provided a dominant component of the momentum injection comes from direct photon pressure from young stars, on top of supernovae, photoionization heating, and stellar winds. The mechanical energy budget from these sources is comparable to low luminosity active galactic neuclei, suggesting that stellar feedback can be a relevant driver of bulk gas motions in galaxy centres – although here ≲10−3 of the ionized gas mass is escaping the galaxy. We test several scenarios for the survival/formation of the cold gas in the outflow, including in situ condensation and cooling. Interestingly, the geometry of the molecular gas shell, observed magnetic field strengths and emission line diagnostics are consistent with a scenario where magnetic field lines aided survival of the dusty ISM as it was initially launched (with mass-loading factor ≲1) from the ring by stellar feedback. This system’s unique feedback-driven morphology can hopefully serve as a useful litmus test for feedback prescriptions in magnetohydrodynamical galaxy simulations.


2018 ◽  
Vol 620 ◽  
pp. A60 ◽  
Author(s):  
R. Cañameras ◽  
N. P. H. Nesvadba ◽  
M. Limousin ◽  
H. Dole ◽  
R. Kneissl ◽  
...  

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109 M⊙, in the strongly gravitationally lensed submillimeter galaxy “the Emerald” (PLCK_G165.7+49.0) at z = 2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5″ and 21″ formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z = 0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4–3) line and 850 μm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9 × 1010 M⊙, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4–3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of –200 km s−1 is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.


2020 ◽  
Vol 492 (2) ◽  
pp. 2973-2995 ◽  
Author(s):  
Robin G Tress ◽  
Rowan J Smith ◽  
Mattia C Sormani ◽  
Simon C O Glover ◽  
Ralf S Klessen ◽  
...  

ABSTRACT We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high-resolution, three-dimensional arepo simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM), we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work, we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.


2006 ◽  
Vol 2 (S237) ◽  
pp. 217-221
Author(s):  
Miriam Rengel ◽  
Klaus Hodapp ◽  
Jochen Eislöffel

AbstractAccording to a triggered star formation scenario (e.g. Martin-Pintado & Cernicharo 1987) outflows powered by young stellar objects shape the molecular clouds, can dig cavities, and trigger new star formation. NGC 1333 is an active site of low- and intermediate star formation in Perseus and is a suggested site of self-regulated star formation (Norman & Silk 1980). Therefore it is a suitable target for a study of triggered star formation (e.g. Sandell & Knee 2001, SK1). On the other hand, continuum sub-mm observations of star forming regions can detect dust thermal emission of embedded sources (which drive outflows), and further detailed structures.Within the framework of our wide-field mapping of star formation regions in the Perseus and Orion molecular clouds using SCUBA at 850 and 450 μm, we mapped NCG 1333 with an area of around 14′× 21′. The maps show more structure than the previous maps of the region observed in sub-mm. We have unveiled the known embedded SK 1 source (in the dust shell of the SSV 13 ridge) and detailed structure of the region, among some other young protostars.In agreement with the SK 1 observations, our map of the region shows lumpy filaments and shells/cavities that seem to be created by outflows. The measured mass of SK 1 (~0.07 M) is much less than its virial mass (~0.2-1 M). Our observations support the idea of SK 1 as an event triggered by outflow-driven shells in NGC 1333 (induced by an increase in gas pressure and density due to radiation pressure from the stellar winds that have presumably created the dust shell). This kind of evidences provides a more thorough understanding of the star formation regulation processes.


Author(s):  
R K Cochrane ◽  
P N Best ◽  
I Smail ◽  
E Ibar ◽  
C Cheng ◽  
...  

Abstract We present ∼0.15″ spatial resolution imaging of SHiZELS-14, a massive ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$), dusty, star-forming galaxy at z = 2.24. Our rest-frame $\sim 1\, \rm {kpc}$-scale, matched-resolution data comprise four different widely used tracers of star formation: the $\rm {H}\alpha$ emission line (from SINFONI/VLT), rest-frame UV continuum (from HST F606W imaging), the rest-frame far-infrared (from ALMA), and the radio continuum (from JVLA). Although originally identified by its modest $\rm {H}\alpha$ emission line flux, SHiZELS-14 appears to be a vigorously star-forming ($\rm {SFR}\sim 1000\, \rm {M_{\odot }\, yr^{-1}}$) example of a submillimeter galaxy, probably undergoing a merger. SHiZELS-14 displays a compact, dusty central starburst, as well as extended emission in $\rm {H}\alpha$ and the rest-frame optical and FIR. The UV emission is spatially offset from the peak of the dust continuum emission, and appears to trace holes in the dust distribution. We find that the dust attenuation varies across the spatial extent of the galaxy, reaching a peak of at least AHα ∼ 5 in the most dusty regions, although the extinction in the central starburst is likely to be much higher. Global star-formation rates inferred using standard calibrations for the different tracers vary from $\sim 10\!-\!1000\, \rm {M_{\odot }\, yr^{-1}}$, and are particularly discrepant in the galaxy’s dusty centre. This galaxy highlights the biased view of the evolution of star-forming galaxies provided by shorter wavelength data.


2018 ◽  
Vol 619 ◽  
pp. A15 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
J. Richard ◽  
K. Nakajima ◽  
...  

Observations have shown that massive star-forming clumps are present in the internal structure of high-redshift galaxies. One way to study these clumps in detail with a higher spatial resolution is by exploiting the power of strong gravitational lensing which stretches images on the sky. In this work, we present an analysis of the clumpy galaxy A68-HLS115 at z = 1.5858, located behind the cluster Abell 68, but strongly lensed by a cluster galaxy member. Resolved observations with SINFONI/VLT in the near-infrared (NIR) show Hα, Hβ, [NII], and [OIII] emission lines. Combined with images covering the B band to the far-infrared (FIR) and CO(2–1) observations, this makes this galaxy one of the only sources for which such multi-band observations are available and for which it is possible to study the properties of resolved star-forming clumps and to perform a detailed analysis of the integrated properties, kinematics, and metallicity. We obtain a stability of υrot/σ0 = 2.73 by modeling the kinematics, which means that the galaxy is dominated by rotation, but this ratio also indicates that the disk is marginally stable. We find a high intrinsic velocity dispersion of 80 ± 10 km s−1 that could be explained by the high gas fraction of fgas = 0.75 ± 0.15 observed in this galaxy. This high fgas and the observed sSFR of 3.12 Gyr−1 suggest that the disk turbulence and instabilities are mostly regulated by incoming gas (available gas reservoir for star formation). The direct measure of the Toomre stability criterion of Qcrit = 0.70 could also indicate the presence of a quasi-stable thick disk. Finally, we identify three clumps in the Hα map which have similar velocity dispersions, metallicities, and seem to be embedded in the rotating disk. These three clumps contribute together to ∼40% on the SFRHα of the galaxy and show a star formation rate density about ∼100 times higher than HII regions in the local Universe.


Author(s):  
Ryohei Harada ◽  
Toshikazu Onishi ◽  
Kazuki Tokuda ◽  
Sarolta Zahorecz ◽  
Annie Hughes ◽  
...  

Abstract The aim of this study is to characterize the distribution and basic properties of the natal gas associated with high-mass young stellar objects (YSOs) in isolated environments in the Large Magellanic Cloud. High-mass stars usually form in giant molecular clouds (GMCs) as part of a young stellar cluster, but some OB stars are observed far from GMCs. By examining the spatial coincidence between the high-mass YSOs and 12CO (J = 1–0) emission detected by NANTEN and Mopra observations, we selected ten high-mass YSOs that are located away from any of the NANTEN clouds but are detected by the Mopra pointed observations. The ALMA observations revealed that a compact molecular cloud whose mass is a few thousand solar masses or smaller is associated with the high-mass YSOs, which indicates that these compact clouds are the sites of high-mass star formation. The high density and high temperature throughout the clouds are explained by the severe photodissociation of CO due to the lower metallicity than in the Galaxy. The star formation efficiency ranges from several to as high as ∼40%, indicating efficient star formation in these environments. The enhanced turbulence may be a cause of the efficient star formation therein, as judged from the gas velocity information and the association with the lower density gas.


2018 ◽  
Vol 14 (A30) ◽  
pp. 102-102
Author(s):  
Jungmi Kwon

AbstractMagnetic fields are ubiquitous in various scales of astronomical objects, and they are considered as playing significant roles from star to galaxy formations. However, the role of the magnetic fields in star forming regions is less well understood because conventional optical polarimetry is hampered by heavy extinction by dust. We have been conducting extensive near-infrared polarization survey of various star-forming regions from low- and intermediate-mass to high-mass star-forming regions, using IRSF/SIRPOL in South Africa. Not only linear but also circular polarizations have been measured for more than a dozen of regions. Both linear and circular polarimetric observations at near-infrared wavelengths are useful tools to study the magnetic fields in star forming regions, although infrared circular polarimetry has been less explored so far. In this presentation, we summarize our results of the near-infrared polarization survey of star forming regions and its comparison with recent submillimeter polarimetry results. Such multi-wavelength approaches can be extended to the polarimetry using ALMA, SPICA in future, and others. We also present our recent results of the first near-infrared imaging polarimetry of young stellar objects in the Circinus molecular cloud, which has been less studied but a very intriguing cluster containing numerous signs of active low-mass star formation.


2018 ◽  
Vol 14 (S345) ◽  
pp. 27-33
Author(s):  
Josefa E. Großschedl ◽  
João Alves ◽  
Stefan Meingast ◽  
Birgit Hasenberger

AbstractThe giant molecular cloud Orion A is the closest massive star-forming region to earth (d ∼ 400 pc). It contains the rich Orion Nebula Cluster (ONC) in the North, and low-mass star-forming regions (L1641, L1647) to the South. To get a better understanding of the differences in star formation activity, we perform an analysis of the gas mass distribution and star formation rate across the cloud. We find that the gas is roughly uniformly distributed, while, oddly, the ONC region produced about a factor of ten more stars compared to the rest of the cloud. For a better interpretation of this phenomenon, we use Gaia DR2 parallaxes, to analyse distances of young stellar objects, using them as proxy for cloud distances. We find that the ONC region indeed lies at about 400 pc while the low-mass star-forming parts are inclined about 70∘ from the plane of the sky reaching until ∼470 pc. With this we estimate that Orion A is an about 90 pc long filamentary cloud (about twice as long as previously assumed), with its “Head” (the ONC region) being “bent” and oriented towards the galactic mid-plane. This striking new view allows us to perform a more robust analysis of this important star-forming region in the future.


2012 ◽  
Vol 8 (S292) ◽  
pp. 48-48
Author(s):  
Tie Liu ◽  
Yuefang Wu ◽  
Huawei Zhang

AbstractThe environments surrounding nine Wolf-Rayet stars were studied in molecular emission. Expanding shells were detected surrounding these WR stars (see left panels of Figure 1). The average masses and radii of the molecular cores surrounding these WR stars anti-correlate with the WR stellar wind velocities (middle panels of Figure 1), indicating the WR stars has great impact on their environments. The number density of Young Stellar Objects (YSOs) is enhanced in the molecular shells at ∼5 arcmin from the central WR star (lower-right panel of Figure 1). Through detailed studies of the molecular shells and YSOs, we find strong evidences of triggered star formation in the fragmented molecular shells (Liu et al. 2010).


Sign in / Sign up

Export Citation Format

Share Document