scholarly journals Metallicity and X-ray luminosity variations in NGC 922

2020 ◽  
Vol 500 (1) ◽  
pp. 962-975
Author(s):  
K Kouroumpatzakis ◽  
A Zezas ◽  
A Wolter ◽  
A Fruscione ◽  
K Anastasopoulou ◽  
...  

ABSTRACT We present a systematic study of the metallicity variations within the collisional ring galaxy NGC 922 based on long-slit optical spectroscopic observations. We find a metallicity difference between star-forming regions in the bulge and the ring, with metallicities ranging from almost solar to significantly sub-solar ($\rm {[12+\log (O/H)]\sim 8.2}$). We detect $\rm{He\,{\small I}}$ emission in all the studied regions of the bulge and the ring, indicating ionization from massive stars associated with recent (<10 Myr) star formation, in agreement with the presence of very young star clusters. We find an anticorrelation between the X-ray luminosity and metallicity of the sub-galactic regions of NGC 922. The different regions have similar stellar population ages, leaving metallicity as the main driver of the anticorrelation. The dependence of the X-ray emission of the different regions in NGC 922 on metallicity is in agreement with similar studies of the integrated X-ray output of galaxies and predictions from X-ray binary population models.

2020 ◽  
Vol 499 (2) ◽  
pp. 2028-2041
Author(s):  
S M Benincasa ◽  
J W Wadsley ◽  
H M P Couchman ◽  
A R Pettitt ◽  
B W Keller ◽  
...  

ABSTRACT Far-ultraviolet (FUV) radiation greatly exceeds UV, supernovae (SNe), and winds in the energy budget of young star clusters but is poorly modelled in galaxy simulations. We present results of the first isolated galaxy disc simulations to include photoelectric heating of gas via dust grains from FUV radiation self-consistently, using a ray-tracing approach that calculates optical depths along the source–receiver sightline. This is the first science application of the TREVR radiative transfer algorithm. We find that FUV radiation alone cannot regulate star formation. However, FUV radiation produces warm neutral gas and is able to produce regulated galaxies with realistic scale heights. FUV is also a long-range feedback and is more important in the outer discs of galaxies. We also use the superbubble feedback model, which depends only on the SN energy per stellar mass, is more physically realistic than common, parameter-driven alternatives and thus better constrains SN feedback impacts. FUV and SNe together can regulate star formation without producing too much hot ionized medium and with less disruption to the interstellar medium compared to SNe alone.


1982 ◽  
Vol 99 ◽  
pp. 545-549 ◽  
Author(s):  
Jorge Melnick

Giant HII regions as sites of massive star formation.Giant HII regions are the brightest extragalactic emission line objects that can be studied in detail. With diameters of several hundreds of parsecs, these nebulae can be easily resolved out to distances of a few Mpc. Typically 100 or more 0 stars are required to account for the observed ionization of the nebular gas and this implies that the cores of giant HII regions contain populous young star clusters. The stars in these clusters have essentially the same age and chemical composition. Thus, giant HII region cores provide excellent sites where theories of the formation and evolution of massive stars and, in particular, of Wolf-Rayet (WR) stars can be tested.


2002 ◽  
Vol 207 ◽  
pp. 450-452
Author(s):  
Alexander S. Gusev

An analysis of parameters of the 566 young star clusters in the 35 late type spiral and irregular galaxies is presented. The disposition, the sizes and the colors of the star clusters are studied, based on the multicolor surface photometry data. The ages of the young star clusters are estimated using evolutionary synthesis method. A problem of taking into account the dust contribution is discussed. Most of the clusters are located in the Inner Lindblad Resonance ring and in other resonance rings. In some ring galaxies the distances between neighbouring star clusters are similar. For some of investigated galaxies, the star clusters belonging to a given galaxy have similar ages. A correlation between age and size of star forming regions exists. The younger objects have smaller average sizes. There are no single star forming regions with sizes > 550 pc. In general, the star forming regions in a given galaxy have similar sizes. A correlation between maximal diameter of star clusters and absolute blue magnitude of parental galaxy exists.


2008 ◽  
Vol 385 (2) ◽  
pp. 929-938 ◽  
Author(s):  
Vasilii V. Gvaramadze ◽  
Alessia Gualandris ◽  
Simon Portegies Zwart

2020 ◽  
Vol 497 (3) ◽  
pp. 3830-3845 ◽  
Author(s):  
Hajime Fukushima ◽  
Hidenobu Yajima ◽  
Kazuyuki Sugimura ◽  
Takashi Hosokawa ◽  
Kazuyuki Omukai ◽  
...  

ABSTRACT We study star cluster formation in various environments with different metallicities and column densities by performing a suite of 3D radiation hydrodynamics simulations. We find that the photoionization feedback from massive stars controls the star formation efficiency (SFE) in a star-forming cloud, and its impact sensitively depends on the gas metallicity Z and initial cloud surface density Σ. At Z = 1 Z⊙, SFE increases as a power law from 0.03 at Σ = 10 M⊙ pc−2 to 0.3 at $\Sigma = 300\,\mathrm{M}_{\odot }\, {\rm pc^{-2}}$. In low-metallicity cases $10^{-2}\!-\!10^{-1}\, \mathrm{Z}_{\odot }$, star clusters form from atomic warm gases because the molecule formation time is not short enough with respect to the cooling or dynamical time. In addition, the whole cloud is disrupted more easily by expanding H ii bubbles that have higher temperature owing to less efficient cooling. With smaller dust attenuation, the ionizing radiation feedback from nearby massive stars is stronger and terminate star formation in dense clumps. These effects result in inefficient star formation in low-metallicity environments: the SFE drops by a factor of ∼3 at Z = 10−2 Z⊙ compared to the results for Z = 1 Z⊙, regardless of Σ. Newborn star clusters are also gravitationally less bound. We further develop a new semi-analytical model that can reproduce the simulation results well, particularly the observed dependencies of the SFEs on the cloud surface densities and metallicities.


2006 ◽  
Vol 2 (S237) ◽  
pp. 496-496
Author(s):  
S. J. Wolk ◽  
B. D. Spitzbart ◽  
T. L. Bourke

AbstractThe combination of spatial and spectral resolution allow us to use Chandra in the study regions of massive star formation which had been inaccessible even from the ground until the last decade. IRAC and MIPS data from Spitzer can be combined with the X–ray data to provide insight into the presence of a disk and the activity of the star. The total package allows us to better understand the evolution of the clusters. We have an ongoing program to study several young star forming clusters including distant clusters between 1-3 kpc which support O stars, RCW 38, NGC 281 and RCW 108 and well as clusters within a kpc including IRAS 20050+2720 and NGC 1579, which is a small cluster centered on the Be star LkHα101 and is of uncertain distance although the X-ray data help us refine the current distance estimates. Given the space constraints we only discuss RCW 108 below.


2019 ◽  
Vol 15 (S352) ◽  
pp. 350-352
Author(s):  
Kathryn Grasha ◽  
Daniela Calzetti

AbstractStar formation provides insight into the physical processes that govern the transformation of gas into stars. A key missing piece in a predictive theory of star formation is the link between scales of individual stars and star clusters up to entire galaxies. LEGUS is now providing the information to test the overall organization and spatial evolution of star formation. We present our latest findings of using star clusters from LEGUS combined with ALMA CO observations to investigate the transition from molecular gas to star formation in local galaxies. This work paves the way for future JWST observations of the embedded phase of star formation, the last missing ingredient to connect young star clusters and their relation with gas reservoirs. Multi-wavelength studies of local galaxies and their stellar and gas components will help shed light on early phases of galaxy evolution and properties of the ISM at high-z.


2005 ◽  
Vol 13 ◽  
pp. 358-362
Author(s):  
Bruce Elmegreen

AbstractTurbulence, self-gravity, and cooling convert most of the interstellar medium into cloudy structures that form stars. Turbulence compresses the gas into clouds directly and it moves pre-existing clouds around passively when there are multiple phases of temperature. Self-gravity also partitions the gas into clouds, forming giant regular complexes in spiral arms and in resonance rings and contributing to the scale-free motions generated by turbulence. Dense clusters form in the most strongly self-gravitating cores of these clouds, often triggered by compression from local stars. Pre-star formation processes inside clusters are not well observed, but the high formation rates and high densities of pre-stellar objects, and their power law mass functions suggest that turbulence, self-gravity, and energy dissipation are involved there too.


Sign in / Sign up

Export Citation Format

Share Document