scholarly journals Properties of gamma-ray decay lines in 3D core-collapse supernova models, with application to SN 1987A and Cas A

2020 ◽  
Vol 494 (2) ◽  
pp. 2471-2497 ◽  
Author(s):  
A Jerkstrand ◽  
A Wongwathanarat ◽  
H-T Janka ◽  
M Gabler ◽  
D Alp ◽  
...  

ABSTRACT Comparison of theoretical line profiles to observations provides important tests for supernova explosion models. We study the shapes of radioactive decay lines predicted by current 3D core-collapse explosion simulations, and compare these to observations of SN 1987A and Cas A. Both the widths and shifts of decay lines vary by several thousand kilometres per second depending on viewing angle. The line profiles can be complex with multiple peaks. By combining observational constraints from 56Co decay lines, 44Ti decay lines, and Fe IR lines, we delineate a picture of the morphology of the explosive burning ashes in SN 1987A. For MZAMS = 15−20 M⊙ progenitors exploding with ∼1.5 × 1051 erg, ejecta structures suitable to reproduce the observations involve a bulk asymmetry of the 56Ni of at least ∼400 km s−1 and a bulk velocity of at least 1500 km s−1. By adding constraints to reproduce the UVOIR bolometric light curve of SN 1987A up to 600 d, an ejecta mass around 14 M⊙ is favoured. We also investigate whether observed decay lines can constrain the neutron star (NS) kick velocity. The model grid provides a constraint VNS > Vredshift, and applying this to SN 1987A gives a NS kick of at least 500 km s−1. For Cas A, our single model provides a satisfactory fit to the NuSTAR observations and reinforces the result that current neutrino-driven core-collapse SN models achieve enough bulk asymmetry in the explosive burning material. Finally, we investigate the internal gamma-ray field and energy deposition, and compare the 3D models to 1D approximations.

2017 ◽  
Vol 12 (S331) ◽  
pp. 148-156 ◽  
Author(s):  
Hans-Thomas Janka ◽  
Michael Gabler ◽  
Annop Wongwathanarat

AbstractFostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.


2020 ◽  
Vol 494 (2) ◽  
pp. 2760-2765 ◽  
Author(s):  
P Cristofari ◽  
M Renaud ◽  
A Marcowith ◽  
V V Dwarkadas ◽  
V Tatischeff

ABSTRACT Some core-collapse supernovae are likely to be efficient cosmic ray accelerators up to the PeV range, and therefore, to potentially play an important role in the overall Galactic cosmic ray population. The TeV gamma-ray domain can be used to study particle acceleration in the multi-TeV and PeV range. This motivates the study of the detectability of such supernovae by current and future gamma-ray facilities. The gamma-ray emission of core-collapse supernovae strongly depends on the level of the two-photon annihilation process: high-energy gamma-ray photons emitted at the expanding shock wave following the supernova explosion can interact with soft photons from the supernova photosphere through the pair production channel, thereby strongly suppressing the flux of gamma-rays leaving the system. In the case of SN 1993J, whose photospheric and shock-related parameters are well measured, we calculate the temporal evolution of the expected gamma-ray attenuation by accounting for the temporal and geometrical effects. We find the attenuation to be of about 10 orders of magnitude in the first few days after the supernova explosion. The probability of detection of a supernova similar to SN 1993J with the Cherenkov Telescope Array is highest if observations are performed either earlier than 1 d, or later than 10 d after the explosion, when the gamma-ray attenuation decreases to about two orders of magnitude.


1991 ◽  
Vol 9 (1) ◽  
pp. 105-106 ◽  
Author(s):  
Patricia Whitelock ◽  
John Menzies ◽  
John A. R. Caldwell

AbstractThe changing total luminosity of SN 1987A between 2 and 1200 days after core collapse is illustrated and discussed. From about four weeks after outburst the supernova light curve was dominated by the release of radioactive decay energy; the major contributor being 0.078M⊙ of 56Co. Recently an additional contribution probably from the decay of 57Co and 44Ti appears to be manifesting itself in the light curve. A gradually increasing fraction of the radioactive decay energy has probably been emitted at X- and γ-ray wavelengths; the fluxes are low and no recent measurements have been published. Most of the remaining radioactive decay energy appears to be emitted in the IR and is very difficult to measure. Other factors influencing the interpretation of the recent light curve are the uncertain contribution from long-lived radioactive isotopes and light-echoes. It is therefore premature to make any definitive statements on the contribution from the neutron star, although it is probably less than a few times 1037 erg s−1.


2017 ◽  
Vol 12 (S331) ◽  
pp. 157-163 ◽  
Author(s):  
Roland Diehl

AbstractGamma ray lines are expected to be emitted as part of the afterglow of supernova explosions, because radioactive decay of freshly synthesised nuclei occurs. Significant radioactive gamma ray line emission is expected from56Ni and44Ti decay on time scales of the initial explosion (56Ni, τ ~days) and the young supernova remnant (44Ti,τ ~90 years). Less specific, and rather informative for the supernova population as a whole, are lessons from longer lived isotopes such as26Al and60Fe. From isotopes of elements heavier than iron group elements, any interesting gamma-ray line emission is too faint to be observable. Measurements with space-based gamma-ray telescopes have obtained interesting gamma ray line emissions from two core collapse events, Cas A and SN1987A, and one thermonuclear event, SN2014J. We discuss INTEGRAL data from all above isotopes, including all line and continuum signatures from these two objects, and the surveys for more supernovae, that have been performed by gamma ray spectrometry. Our objective here is to illustrate what can be learned from gamma-ray line emission properties about the explosions and their astrophysics.


2009 ◽  
Author(s):  
Adam Burrows ◽  
Jason Nordhaus ◽  
Ivan Hubeny ◽  
James M. Stone ◽  
Keith MacGregor ◽  
...  

2004 ◽  
Vol 13 (07) ◽  
pp. 1287-1292 ◽  
Author(s):  
GERMÁN LUGONES ◽  
JORGE E. HORVATH

We present a brief review of the present status of the standard model of core collapse supernovae and neutron star formation outlining the basic concepts and paying attention to the possibility of a transition to quark matter. We evaluate the consequences of this transition on the whole explosion mechanism, analyze the possible generation of beamed gamma ray bursts, and discuss the nature of the compact star born as a result of the supernova explosion.


2008 ◽  
Vol 4 (S252) ◽  
pp. 333-338
Author(s):  
Wei Wang

AbstractGamma-ray line emission from radioactive decay of 60Fe provides constraints on nucleosynthesis in massive stars and supernovae. We detect the γ-ray lines from 60Fe decay at 1173 and 1333 keV using three years of data from the spectrometer SPI on board INTEGRAL. The average flux per line is (4.4 ± 0.9) × 10−5 ph cm−2 s−1 rad−1 for the inner Galaxy region. Deriving the Galactic 26Al gamma-ray line flux with using the same set of observations and analysis method, we determine the flux ratio of 60Fe/26Al gamma-rays as 0.15 ± 0.05. We discuss the implications of these results for the widely-held hypothesis that 60Fe is synthesized in core-collapse supernovae, and also for the closely-related question of the precise origin of 26Al in massive stars.


2011 ◽  
Vol 7 (S279) ◽  
pp. 433-446

Measuring cosmological parameters with GRBs: status and perspectivesNew interpretation of the Amati relationThe SED Machine - a dedicated transient spectrographPTF10iue - evidence for an internal engine in a unique Type Ic SNDirect evidence for the collapsar model of long gamma-ray burstsOn pair instability supernovae and gamma-ray burstsPan-STARRS1 observations of ultraluminous SNeThe influence of rotation on the critical neutrino luminosity in core-collapse supernovaeGeneral relativistic magnetospheres of slowly rotating and oscillating neutron starsHost galaxies of short GRBsGRB 100418A: a bridge between GRB-associated hypernovae and SNeTwo super-luminous SNe at z ~ 1.5 from the SNLSProspects for very-high-energy gamma-ray bursts with the Cherenkov Telescope ArrayThe dynamics and radiation of relativistic flows from massive starsThe search for light echoes from the supernova explosion of 1181 ADThe proto-magnetar model for gamma-ray burstsStellar black holes at the dawn of the universeMAXI J0158-744: the discovery of a supersoft X-ray transientWide-band spectra of magnetar burst emissionDust formation and evolution in envelope-stripped core-collapse supernovaeThe host galaxies of dark gamma-ray burstsKeck observations of 150 GRB host galaxiesSearch for properties of GRBs at large redshiftThe early emission from SNeSpectral properties of SN shock breakoutMAXI observation of GRBs and short X-ray transientsA three-dimensional view of SN 1987A using light echo spectroscopyX-ray study of the southern extension of the SNR Puppis AAll-sky survey of short X-ray transients by MAXI GSCDevelopment of the CALET gamma-ray burst monitor (CGBM)


1990 ◽  
Vol 351 ◽  
pp. L41 ◽  
Author(s):  
J. Tueller ◽  
S. Barthelmy ◽  
N. Gehrels ◽  
B. J. Teegarden ◽  
M. Leventhal ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document