scholarly journals FRB coherent emission from decay of Alfvén waves

2020 ◽  
Vol 494 (2) ◽  
pp. 2385-2395 ◽  
Author(s):  
Pawan Kumar ◽  
Željka Bošnjak

ABSTRACT We present a model for fast radio bursts (FRBs) where a large-amplitude Alfvén wave packet is launched by a disturbance near the surface of a magnetar, and a substantial fraction of the wave energy is converted to coherent radio waves at a distance of a few tens of neutron star radii. The wave amplitude at the magnetar surface should be about 1011 G in order to produce an FRB of isotropic luminosity 1044 erg s−1. An electric current along the static magnetic field is required by Alfvén waves with non-zero component of transverse wave vector. The current is supplied by counter-streaming electron–positron pairs, which have to move at nearly the speed of light at larger radii as the plasma density decreases with distance from the magnetar surface. The counter-streaming pairs are subject to two-stream instability, which leads to formation of particle bunches of size of the order of c/ωp, where ωp is the plasma frequency. A strong electric field develops along the static magnetic field when the wave packet arrives at a radius where electron–positron density is insufficient to supply the current required by the wave. The electric field accelerates particle bunches along the curved magnetic field lines, and that produces the coherent FRB radiation. We provide a number of predictions of this model.

1999 ◽  
Vol 17 (4) ◽  
pp. 463-489 ◽  
Author(s):  
P. Prikryl ◽  
J. W. MacDougall ◽  
I. F. Grant ◽  
D. P. Steele ◽  
G. J. Sofko ◽  
...  

Abstract. A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0). The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of \\sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.Key words. Ionosphere (polar ionosphere). Magneto- spheric physics (magnetosphere-ionosphere interactions; polar wind-magnetosphere interactions).


1985 ◽  
Vol 107 ◽  
pp. 559-559
Author(s):  
V. A. Mazur ◽  
A. V. Stepanov

It is shown that the existence of plasma density inhomogeneities (ducts) elongated along the magnetic field in coronal loops, and of Alfven wave dispersion, associated with the taking into account of gyrotropy U ≡ ω/ωi ≪ 1 (Leonovich et al., 1983), leads to the possibility of a quasi-longitudinal k⊥ < √U k‖ propagation (wave guiding) of Alfven waves. Here ω is the frequency of Alfven waves, ωi is the proton gyrofrequency, and k is the wave number. It is found that with the parameter ξ = ω2 R/ωi A > 1, where R is the inhomogeneity scale of a loop across the magnetic field, and A is the Alfven wave velocity, refraction of Alfven waves does not lead, as contrasted to Wentzel's inference (1976), to the waves going out of the regime of quasi-longitudinal propagation. As the result, the amplification of Alfven waves in solar coronal loops can be important. A study is made of the cyclotron instability of Alfven waves under solar coronal conditions.


2000 ◽  
Vol 63 (4) ◽  
pp. 311-328 ◽  
Author(s):  
A. BARONIA ◽  
M. S. TIWARI

Kinetic Alfvén waves in the presence of an inhomogeneous electric field applied perpendicular to the ambient magnetic field in an anisotropic, inhomogeneous magnetoplasma are investigated. The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of a kinetic Alfvén wave. Expressions are found for the field-aligned current, the perpendicular current, the dispersion relation and the particle energies. The growth rate of the wave is obtained by an energy- conservation method. It is predicted that plasma density inhomogeneity is the main source of instability, and an enhancement of the growth rate by electric field inhomogeneity and temperature anisotropy is found. The dispersion relation and growth rate involve the finite-Larmor-radius effect, electron inertia and the temperature anisotropy of the magnetoplasma. The applicability of the investigation to the auroral acceleration region is discussed.


1985 ◽  
Vol 107 ◽  
pp. 559-559
Author(s):  
V. A. Mazur ◽  
A. V. Stepanov

It is shown that the existence of plasma density inhomogeneities (ducts) elongated along the magnetic field in coronal loops, and of Alfven wave dispersion, associated with the taking into account of gyrotropy U ≡ ω/ωi ≪ 1 (Leonovich et al., 1983), leads to the possibility of a quasi-longitudinal k⊥ < √U k‖ propagation (wave guiding) of Alfven waves. Here ω is the frequency of Alfven waves, ωi is the proton gyrofrequency, and k is the wave number. It is found that with the parameter ξ = ω2 R/ωi A > 1, where R is the inhomogeneity scale of a loop across the magnetic field, and A is the Alfven wave velocity, refraction of Alfven waves does not lead, as contrasted to Wentzel's inference (1976), to the waves going out of the regime of quasi-longitudinal propagation. As the result, the amplification of Alfven waves in solar coronal loops can be important. A study is made of the cyclotron instability of Alfven waves under solar coronal conditions.


2018 ◽  
Vol 620 ◽  
pp. A44
Author(s):  
Michael S. Ruderman ◽  
Nikolai S. Petrukhin

We study damping of phase-mixed Alfvén waves propagating in axisymmetric magnetic plasma configurations. We use the linear magnetohydrodynamic (MHD) equations in the cold plasma approximation. The only dissipative process that we take into account is shear viscosity. We reduce the MHD equations describing the Alfvén wave damping to a Klein–Gordon-type equation. We assume that the two terms in this equation, one describing the effect of inhomogeneity and the other the effect of viscosity, are small. Then we use the WKB method to derive the expression describing the wave energy flux attenuation with the height. We apply the general theory to particular equilibria with the exponentially divergent magnetic field lines with the characteristic scale H. The plasma density exponentially decreases with the height with the characteristic scale Hρ. We study the wave damping for typical parameters of coronal plumes and various values of the wave period, the characteristic scale of the magnetic field variation H, and kinematic shear viscosity ν. We show that to have an appreciable wave damping at the height 6H we need to increase shear viscosity by at least six orders of magnitude in comparison with the value given by the classical plasma theory. Another important result is that the efficiency of wave damping strongly depends on the ratio H/Hρ. It increases fast when H/Hρ decreases. We present a physical explanation of this phenomenon.


2003 ◽  
Vol 69 (4) ◽  
pp. 277-304 ◽  
Author(s):  
PETER A. DAMIANO ◽  
R. D. SYDORA ◽  
J. C. SAMSON

We have developed a hybrid magnetohydrodynamics (MHD) –kinetic box model valid for standing shear Alfvén waves using the cold plasma MHD equations coupled to a system of kinetic electrons. The guiding centre equations are used for the motion of the electrons and the system is closed via an expression for the field-aligned electric field in terms of the perpendicular electric field and moments of the electron distribution function. The perpendicular electric fields are derived from the ideal MHD approximation. We outline the basic model equations and method of solution. Simulations are then presented comparing the hybrid model results with a cold plasma MHD model. Landau damping is shown to heavily damp the standing shear Alfvén wave in the hybrid simulations when $v_{th} \ge V_{A}$. The damping rate is shown to be in good agreement with the theoretical rate calculated for the model parameters.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
L. M. B. C. Campos ◽  
M. J. S. Silva ◽  
F. Moleiro

The multipolar representation of the magnetic field has, for the lowest-order term, a magnetic dipole that dominates the far field. Thus the far-field representation of the magnetic field of the Earth, Sun and other celestial bodies is a dipole. Since these bodies consist of or are surrounded by plasma, which can support Alfvén waves, their propagation along dipole magnetic field lines is considered using a new coordinate system: dipolar coordinates. The present paper introduces multipolar coordinates, which are an example of conformal coordinates; conformal coordinates are orthogonal with equal scale factors, and can be extended from the plane to space, for instance as cylindrical or spherical dipolar coordinates. The application considered is to Alfvén waves propagating along a circle, that is a magnetic field line of a dipole, with transverse velocity and magnetic field perturbations; the various forms of the wave equation are linear second-order differential equations, with variable coefficients, specified by a background magnetic field, which is force free. The absence of a background magnetic force leads to a mean state of hydrostatic equilibrium, specified by the balance of gravity against the pressure gradient, for a perfect gas or incompressible liquid. The wave equation is simplified to a Gaussian hypergeometric type in the case of zero frequency, otherwise, for non-zero frequency, an extended Gaussian hypergeometric equation is obtained. The solution of the latter specifies the magnetic field perturbation spectrum, and also, via a polarisation relation, the velocity perturbation spectrum; both are plotted, over half a circle, for three values of the dimensionless frequency.


1999 ◽  
Vol 62 (1) ◽  
pp. 1-33 ◽  
Author(s):  
L. M. B. C. CAMPOS ◽  
N. L. ISAEVA

This paper considers Alfvén waves in a radially stratified medium where all background quantities, namely mass density, magnetic field strength and mean flow velocity, depend only on the distance from the centre, the latter two being assumed to lie in the radial direction. It is shown that the radial dependence of Alfvén waves is the same for two cases: (i) when the velocity and magnetic field perturbations are along parallels, in the one-dimensional case of only radial and time dependence; (ii) in the three-dimensional case with dependence on all three spherical coordinates and time, for velocity and magnetic field perturbations with components along parallels and meridians, represented by the radial components of the vorticity and electric current respectively. Elimination between these equations leads to the convected Alfvén-wave equation in the case of uniform flow, and an equation with an additional term in the case of non-uniform flow with mean flow velocity a linear function of distance. The latter case, namely that of non-uniform flow with flow velocity increasing linearly with distance, is analysed in detail; conservation of mass flux requires the mass density to decay as the inverse cube of the distance. The Alfvén-wave equation has a critical layer where the flow velocity equals the Alfvén speed, leading to three sets of two solutions, namely below, above and across the critical layer. The latter is used to specify the wave behaviour in the vicinity of the critical layer, where local partial transmission occurs. The problem has two dimensionless parameters: the frequency and the initial Alfvén number. It is shown, by plotting the wave fields relative to the critical layer, that these two dimensionless parameters appear in a single combination. This simplifies the plotting of the wave fields for several combinations of physical conditions. It is shown in the Appendix that the formulation of the equations of MHD in the original Elsässer (1956) form, often used in the recent literature, does not apply if the background mass density is non-uniform on the scale of a wavelength. The present theory, based on exact solutions of the Alfvén-wave equation for a inhomogeneous moving medium, is unrestricted as to the relative magnitude of the local wavelength and scale of change of properties of the background medium. The present theory shows that the rate-of-decay of wave amplitude is strongly dependent on wave frequency beyond the critical layer, i.e. the process of change with distance of the spectrum of Alfvén waves in the solar wind starts at the critical layer.


2002 ◽  
Vol 20 (2) ◽  
pp. 161-174 ◽  
Author(s):  
P. Prikryl ◽  
G. Provan ◽  
K. A. McWilliams ◽  
T. K. Yeoman

Abstract. Pulsed ionospheric flows (PIFs) in the cusp foot-print have been observed by the SuperDARN radars with periods between a few minutes and several tens of minutes. PIFs are believed to be a consequence of the interplanetary magnetic field (IMF) reconnection with the magnetospheric magnetic field on the dayside magnetopause, ionospheric signatures of flux transfer events (FTEs). The quasiperiodic PIFs are correlated with Alfvénic fluctuations observed in the upstream solar wind. It is concluded that on these occasions, the FTEs were driven by Alfvén waves coupling to the day-side magnetosphere. Case studies are presented in which the dawn-dusk component of the Alfvén wave electric field modulates the reconnection rate as evidenced by the radar observations of the ionospheric cusp flows. The arrival of the IMF southward turning at the magnetopause is determined from multipoint solar wind magnetic field and/or plasma measurements, assuming plane phase fronts in solar wind. The cross-correlation lag between the solar wind data and ground magnetograms that were obtained near the cusp footprint exceeded the estimated spacecraft-to-magnetopause propagation time by up to several minutes. The difference can account for and/or exceeds the Alfvén propagation time between the magnetopause and ionosphere. For the case of short period ( < 13 min) PIFs, the onset times of the flow transients appear to be further delayed by at most a few more minutes after the IMF southward turning arrived at the magnetopause. For the case of long period (30 – 40 min) PIFs, the observed additional delays were 10–20 min. We interpret the excess delay in terms of an intrinsic time scale for reconnection (Russell et al., 1997) which can be explained by the surface-wave induced magnetic reconnection mechanism (Uberoi et al., 1999). Here, surface waves with wavelengths larger than the thickness of the neutral layer induce a tearing-mode instability whose rise time explains the observed delay of the reconnection onset. The compressional fluctuations in solar wind and those generated in the magnetosheath through the interaction between the solar wind Alfvén waves and the bow shock were the source of magnetopause surface waves inducing reconnection.Key words. Interplanetary physics (MHD waves and turbulence) – Magnetospheric physics (magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


2005 ◽  
Vol 23 (2) ◽  
pp. 401-417 ◽  
Author(s):  
P. Prikryl ◽  
D. B. Muldrew ◽  
G. J. Sofko ◽  
J. M. Ruohoniemi

Abstract. A case study of medium-scale travelling ionospheric disturbances (TIDs) that are correlated with solar wind Alfvén waves is presented. The HF radar ground-scatter signatures of TIDs caused by atmospheric gravity waves with periods of 20-40min are traced to a source at high latitudes, namely pulsed ionospheric flows (PIFs) due to bursts in the convection electric field and/or the associated ionospheric current fluctuations inferred from ground magnetic field perturbations. The significance of PIFs and TIDs in the context of solar-terrestrial interaction is that Alfvénic fluctuations of the interplanetary magnetic field (IMF) observed in the solar wind plasma streaming from a coronal hole correlate with PIFs and TIDs. The link between the solar wind Alfvén waves and TIDs is corroborated by the ground magnetic field signatures of ionospheric current fluctuations that are associated with the IMF-By oscillations and TIDs. The observed PIFs and the associated negative-to-positive deflections of the ground magnetic field X component are interpreted as ionospheric signatures of magnetic reconnection pulsed by solar wind Alfvén waves at the dayside magnetopause. Although the clarity of the radar line-of-sight velocity data may have been affected by anomalous HF propagation due to intervening TIDs, the application of a pure state filtering technique to analyze the radar data time series reveals a one-to-one correspondence between PIFs, TIDs and solar wind Alfvén waves. The spectra of solar wind and ground magnetic field perturbations are similar to those of PIFs and TIDs. The ground-scatter signatures indicate TID wavelengths, phase velocities and travel times that are consistent with ray tracing, which shows a subset of possible gravity wave group paths that reach the F region from a source in the E region after the wave energy first travel downward to the upper mesosphere where the waves are reflected upward. The observed one-to-one correspondence between the convection electric field bursts and TIDs is consistent with the modeling results for large-scale TIDs by Millward et al. (1993a,b). The correlation with solar wind Alfvén waves points to very direct coupling of energy in the solar wind into the subauroral atmosphere.


Sign in / Sign up

Export Citation Format

Share Document