scholarly journals Standardizing Dainotti-correlated gamma-ray bursts, and using them with standardized Amati-correlated gamma-ray bursts to constrain cosmological model parameters

Author(s):  
Shulei Cao ◽  
Narayan Khadka ◽  
Bharat Ratra

Abstract We show that each of the three Dainotti-correlated gamma-ray burst (GRB) data sets recently compiled by Wang et al. and Hu et al., that together probe the redshift range 0.35 ≤ z ≤ 5.91, obey cosmological-model-independent Dainotti correlations and so are standardizable. We use these GRB data in conjunction with the best currently-available Amati-correlated GRB data, that probe 0.3399 ≤ z ≤ 8.2, to constrain cosmological model parameters. The resulting cosmological constraints are weak, providing lower limits on the non-relativistic matter density parameter, mildly favoring non-zero spatial curvature, and largely consistent with currently accelerated cosmological expansion as well as with constraints determined from better-established data.

2017 ◽  
Vol 26 (09) ◽  
pp. 1750097 ◽  
Author(s):  
Xiangyun Fu ◽  
Pengcheng Li

In this paper, we perform a cosmological model-independent test of the cosmic distance–duality relation (CDDR) in terms of the ratio of angular diameter distance (ADD) [Formula: see text] from strong gravitational lensing (SGL) and the ratio of luminosity distance (LD) [Formula: see text] obtained from the joint of type Ia supernovae (SNIa) Union2.1 compilation and the latest Gamma-Ray Bursts (GRBs) data, where the superscripts s and l correspond to the redshifts [Formula: see text] and [Formula: see text] at the source and lens from SGL samples. The purpose of combining GRB data with SNIa compilation is to test CDDR in a wider redshift range. The LD associated with the redshifts of the observed ADD is obtained through two cosmological model-independent methods, namely, method A: binning the SNIa+GRBs data, and method B: reconstructing the function of DL by combining the Crossing Statistic with the smoothing method. We find that CDDR is compatible with the observations at [Formula: see text] confidence level for the power law model which is assumed to describe the mass distribution of lensing systems with method B in a wider redshift range.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550057 ◽  
Author(s):  
Xuheng Ding ◽  
Zhengxiang Li ◽  
Zong-Hong Zhu

Gamma-ray bursts (GRBs), have been widely used as distance indicators to measure the cosmic expansion and explore the nature of dark energy. A popular method adopted in previous works is to calibrate the luminosity relations which are responsible for distance estimation of GRBs with more primary (low redshift) cosmic distance ladder objects, type Ia supernovae (SNe Ia). Since distances of SNe Ia in all SN Ia samples used to calibrate GRB luminosity relations were usually derived from the global fit in a specific cosmological model, the distance of GRB at a given redshift calibrated with matching SNe Ia was still cosmological-model-dependent. In this paper, we first directly determine the distances of SNe Ia with the Angular Diameter Distances (ADDs) of galaxy clusters without any assumption for the background of the universe, and then calibrate GRB luminosity relations with our cosmology-independent distances of SNe Ia. The results suggest that, compared to the previous original manner where distances of SNe Ia used as calibrators are determined from the global fit in a particular cosmological model, our treatments proposed here yield almost the same calibrations of GRB luminosity relations and the cosmological implications of them do not suffer any circularity.


2021 ◽  
Vol 502 (4) ◽  
pp. 6140-6156 ◽  
Author(s):  
Narayan Khadka ◽  
Bharat Ratra

ABSTRACT We use six different cosmological models to study the recently released compilation of X-ray and UV flux measurements of 2038 quasars (QSOs) which span the redshift range 0.009 ≤ z ≤ 7.5413. We find, for the full QSO data set, that the parameters of the X-ray and UV luminosities LX−LUV relation used to standardize these QSOs depend on the cosmological model used to determine these parameters, i.e. it appears that the full QSO data set includes QSOs that are not standardized and so cannot be used for the purpose of constraining cosmological parameters. Subsets of the QSO data, restricted to redshifts z ≲ 1.5–1.7 obey the LX−LUV relation in a cosmological-model-independent manner, and so can be used to constrain cosmological parameters. The cosmological constraints from these lower z, smaller QSO data subsets are mostly consistent with, but significantly weaker than, those that follow from baryon acoustic oscillation and Hubble parameter measurements.


2021 ◽  
Vol 503 (3) ◽  
pp. 4581-4600
Author(s):  
Orlando Luongo ◽  
Marco Muccino

ABSTRACT We alleviate the circularity problem, whereby gamma-ray bursts are not perfect distance indicators, by means of a new model-independent technique based on Bézier polynomials. We use the well consolidate Amati and Combo correlations. We consider improved calibrated catalogues of mock data from differential Hubble rate points. To get our mock data, we use those machine learning scenarios that well adapt to gamma-ray bursts, discussing in detail how we handle small amounts of data from our machine learning techniques. We explore only three machine learning treatments, i.e. linear regression, neural network, and random forest, emphasizing quantitative statistical motivations behind these choices. Our calibration strategy consists in taking Hubble’s data, creating the mock compilation using machine learning and calibrating the aforementioned correlations through Bézier polynomials with a standard chi-square analysis first and then by means of a hierarchical Bayesian regression procedure. The corresponding catalogues, built up from the two correlations, have been used to constrain dark energy scenarios. We thus employ Markov chain Monte Carlo numerical analyses based on the most recent Pantheon supernova data, baryonic acoustic oscillations, and our gamma-ray burst data. We test the standard ΛCDM model and the Chevallier–Polarski–Linder parametrization. We discuss the recent H0 tension in view of our results. Moreover, we highlight a further severe tension over Ωm and we conclude that a slight evolving dark energy model is possible.


2008 ◽  
Vol 17 (09) ◽  
pp. 1319-1332
Author(s):  
PETER MÉSZÁROS

Gamma-ray bursts are capable of accelerating cosmic rays up to GZK energies Ep ~ 1020 eV, which can lead to a flux at Earth comparable to that observed by large EAS arrays such as Auger. The semi-relativistic outflows inferred in GRB-related hypernovae are also likely sources of somewhat lower energy cosmic rays. Leptonic processes, such as synchrotron and inverse Compton, as well as hadronic processes, can lead to GeV-TeV gamma-rays measurable by GLAST, AGILE, or ACTs, providing useful probes of the burst physics and model parameters. Photo-meson interactions also produce neutrinos at energies ranging from sub-TeV to EeV, which will be probed with forthcoming experiments such as IceCube, ANITA and KM3NeT. This would provide information about the fundamental interaction physics, the acceleration mechanism, the nature of the sources and their environment.


2003 ◽  
Vol 214 ◽  
pp. 331-332
Author(s):  
Zhuo Li ◽  
Z. G. Dai ◽  
T. Lu

Gamma-ray bursts (GRBs) are believed to originate from ultra-relativistic fireballs, with initial Lorentz factor η ∼ 102 − 103. However very high energy photons may still suffer from γγ interaction. We show here that in a wide range of model parameters, the resulting pairs may dominate electrons associated with the fireball baryons. This may provide an explanation for the rarity of prompt optical detections. A rapid response to the GRB trigger at the IR band would detect such a strong flash.


2021 ◽  
Vol 503 (2) ◽  
pp. 1847-1863
Author(s):  
James K Leung ◽  
Tara Murphy ◽  
Giancarlo Ghirlanda ◽  
David L Kaplan ◽  
Emil Lenc ◽  
...  

ABSTRACT We present a search for radio afterglows from long gamma-ray bursts using the Australian Square Kilometre Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, covering the entire celestial sphere south of declination +41○, and three epochs of the Variables and Slow Transients Pilot Survey (Phase 1), covering ∼5000 square degrees per epoch. The observations we used from these surveys spanned a nine-month period from 2019 April 21 to 2020 January 11. We cross-matched radio sources found in these surveys with 779 well-localized (to ≤15 arcsec) long gamma-ray bursts occurring after 2004 and determined whether the associations were more likely afterglow- or host-related through the analysis of optical images. In our search, we detected one radio afterglow candidate associated with GRB 171205A, a local low-luminosity gamma-ray burst with a supernova counterpart SN 2017iuk, in an ASKAP observation 511 d post-burst. We confirmed this detection with further observations of the radio afterglow using the Australia Telescope Compact Array at 859 and 884 d post-burst. Combining this data with archival data from early-time radio observations, we showed the evolution of the radio spectral energy distribution alone could reveal clear signatures of a wind-like circumburst medium for the burst. Finally, we derived semi-analytical estimates for the microphysical shock parameters of the burst: electron power-law index p = 2.84, normalized wind-density parameter A* = 3, fractional energy in electrons ϵe = 0.3, and fractional energy in magnetic fields ϵB = 0.0002.


Sign in / Sign up

Export Citation Format

Share Document