scholarly journals The long-term evolution of neutron star merger remnants - I. The impact of r-process nucleosynthesis

2014 ◽  
Vol 439 (1) ◽  
pp. 744-756 ◽  
Author(s):  
S. Rosswog ◽  
O. Korobkin ◽  
A. Arcones ◽  
F.- K. Thielemann ◽  
T. Piran
2016 ◽  
Vol 38 (4) ◽  
Author(s):  
Marcus Wurzer ◽  
Reinhold Hatzinger

The well-known problems of decreasing birth rates and population ageing represent a major challenge for the Austrian pension system. It is expected that the group of pensioners will grow steadily in the future, while the proportion of people that support them – the taxpayers – will shrink. In this regard, microsimulation provides a valuable tool to identify the impact of various policy measures. With microsimulation, it is not only possibleto predict cross-sectional data (e.g., the distribution of age groups in 2050), but also to simulate lifecourses of people, providing longitudinal outcomes. The demographics module is the first in a series of modules that are part of a microsimulation prototype. This prototype is being developed in order to predict the long-term evolution of Employment Biographies in Austria.


2021 ◽  
Author(s):  
Christian Silbermann

<p><strong>Co-authors: Francesco Parisio, Thomas Nagel</strong></p><p>Glaciation cycles affect the long-term evolution of geosystems by crustal deformation, ground freezing and thawing, as well as large-scale hydrogeological changes. In order to properly understand the present and future conditions of potential nuclear waste repository sites, we need to simulate the past history. <br>For this, a sedimentary basin is considered here as a large-scale hydrogeological benchmark study. The long-term evolution during one glacial cycle is simulated using the open-source multi-field finite element code <em>OpenGeoSys</em>. The impact of the glacial loading (weight and induced shear) is taken into account using appropriate time-dependent stress boundary conditions. As a preliminary study, the hydro-mechanically coupled problem and the thermal problem are considered separately. For comparison with a previously published study by Bense et al. (2008), the entire displacement field is prescribed and the groundwater evolution (hydraulic problem) is regarded. Then, the displacement is only prescribed by means of boundary conditions. The impact of different constitutive assumptions on the deformation and hydraulic behavior is analyzed. The thermal problem is used to simulate the evolution of frost bodies in the subsurface beneath and ahead of the glacier.</p><p>V. F. Bense and M. A. Person. Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles. Journal of Geophysical Research,<br>113(F4):F04005, 10 2008.</p>


Author(s):  
Mohd Mueen Ul Islam Mattoo ◽  
Huda Adibah Mohd Ramli

<span lang="EN-GB">The allocation of radio resources is one of the most critical functions performed by the Radio Resource Management (RRM) mechanisms in the downlink Long Term Evolution – Advanced (LTE-Advanced). Packet scheduling concerns itself with allocation of these radio resources in an intelligent manner such that system throughput/capacity can be maximized whilst the required multimedia Quality of Service (QoS) is met. Majority of the previous studies of packet scheduling algorithms for LTE-Advanced did not take the effect of channel impairments into account. However, in real world the channel impairments cannot be obliterated completely and have a direct impact on the packet scheduling performance. As such, this work studies the impact of channel impairments on packet scheduling performance in a practical downlink LTE-Advanced. The simulation results obtained demonstrate the efficacy of RM2 scheduling algorithm over other scheduling algorithms in maximizing the system capacity and is more robust on the effect of the cellular channel impairments.  </span>


1994 ◽  
Vol 433 ◽  
pp. 780 ◽  
Author(s):  
V. A. Urpin ◽  
G. Chanmugam ◽  
Yeming Sang

Author(s):  
Ahmad Hani El Fawal ◽  
Ali Mansour ◽  
Mohamad Najem

This chapter envisions the challenges that will face the mobile operators such as sending vehicle-to-vehicle (V2V) payloads in form of synchronized storms, the fast saturation of the limited bandwidth of long-term evolution for machines (LTE-M) and narrow band-internet of things (NB-IoT) with the rise number of machine-to-machine (M2M) devices and V2V devices, V2V congestion overload problem in IoT environments specifically during disaster events. It extends a new solution proposed by the authors named Adaptive eNodeB (A-eNB) for both LTE-M and NB-IoT networks to deal with V2V excessive traffic. The A-eNB can solve gradually V2V overload problem, while keeping the human-to-human (H2H) traffic quality of service (QoS) not to be affected badly. It corroborates a new framework model proposed by the authors called coexistence analyzer and network architecture for long-term evolution (CANAL) to study the impact on V2V, M2M, and H2H and mutual influences, based on continuous-time Markov chain (CTMC) to simulate, analyze, and measure radio access strategies.


2016 ◽  
Vol 78 (10-4) ◽  
Author(s):  
Nurulanis Mohd Yusoff ◽  
Darmawaty Mohd Ali ◽  
Ku Siti Syahidah Ku Mohd Noh

Energy efficiency has become an important feature in communication systems due to the problem of global warming and lack of energy resources. The impact on global warming caused by wireless communication industries has been gradually increasing, so it is obvious that developing the green communication is significant. In particular, energy consumption in the base stations and downlink transmission are the major areas where significant conservation can be achieved. Thus, the objective of this study is to investigate the performance of the packet scheduling algorithms in the downlink transmission and the energy consumption for video and Voice over IP (VoIP) applications in Long Term Evolution (LTE) systems. In this work, four different scheduling algorithms were analysed namely the Channel and Quality of Service Aware Proportional Fair (CQA_PF), CQA Frequency Fading (CQA_Ff), Priority Set Scheduler Proportional Fair (PSS_PF), and PSS Carrier Over Interference to Average (PSS_CoItA) based on the performance metrics of throughput, delay, energy consumption ratio (ECR) and fairness. The results showed that the CQA algorithm for both methods (CQA_PF and CQA_Ff) outperformed the other algorithms since it has the highest throughput with an increase of up to 25%. Meanwhile, for delay and ECR, the CQA scheduler was the lowest of up to 20% as compared to the PSS scheduler. Thus, it can be concluded that CQA is the most energy efficient algorithm to schedule the video and VoIP applications.


2018 ◽  
Vol 482 (3) ◽  
pp. 3045-3057 ◽  
Author(s):  
A I Chugunov

Abstract I consider differential rotation, associated with radiation-driven Chandrasekhar–Friedman–Schutz (CFS) instability, and respective observational manifestations. I focus on the evolution of the apparent spin frequency, which is typically associated with the motion of a specific point on the stellar surface (e.g. polar cap). I start from long-term evolution (on the time-scale when instability significantly changes the spin frequency). For this case, I reduce the evolution equations to one differential equation and I demonstrate that it can be directly derived from energy conservation law. This equation governs the evolution rate through a sequence of thermally equilibrium states and it provides linear coupling for the cooling power and rotation energy losses via gravitational wave emission. In particular, it shows that differential rotation does not affect long-term spin-down. In contrast, on short time-scales, differential rotation can significantly modify the apparent spin-down, if we examine a strongly unstable star with a very small initial amplitude for the unstable mode. This statement is confirmed by considering a Newtonian non-magnetized perfect fluid and dissipative stellar models as well as a magnetized stellar model. For example, despite the fact that the widely applied evolution equations predict effective spin to be constant in the absence of dissipation, the CFS-unstable star should be observed as spinning-down. However, the effects of differential rotation on apparent spin-down are negligible for realistic models of neutron star recycling, unless the neutron star is non-magnetized, the r-mode amplitude is modulated faster than the shear viscosity dissipation time-scale, and the amplitude is large enough that spin-down can be measured on a modulation time-scale.


Sign in / Sign up

Export Citation Format

Share Document