scholarly journals Dynamical analysis of the cluster pair: A3407 + A3408

2016 ◽  
Vol 460 (2) ◽  
pp. 2193-2206 ◽  
Author(s):  
R. S. Nascimento ◽  
A. L. B. Ribeiro ◽  
M. Trevisan ◽  
E. R. Carrasco ◽  
H. Plana ◽  
...  
2019 ◽  
Vol 622 ◽  
pp. A65
Author(s):  
Marcelo D. Mora ◽  
Thomas H. Puzia ◽  
Julio Chanamé

Context. The Large Magellanic Cloud (LMC) is known to be the host of a rich variety of star clusters of all ages. A large number of them is seen in close projected proximity. Ages have been derived for few of them showing differences up to few million years, hinting at being binary star clusters. However, final confirmation through spectroscopy measurements and dynamical analysis is needed. Aims. In the present work we focus on one of these LMC cluster pairs (NGC 2006–SL 538) and aim to determine whether the star cluster pair is a bound entity and, therefore, a binary star cluster or a chance alignment. Methods. We used the Magellan Inamori Kyocera Echelle (MIKE) high-resolution spectrograph on the 6.5 m Magellan-II Clay telescope at Las Campanas Observatory to acquire integrated-light spectra of the two clusters, measuring their radial velocities with individual absorption features and cross-correlation of each spectrum with a stellar spectral library. Results. We measured radial velocities by two methods: first by direct line-profile measurement yields νr = 300.3 ± 5 ± 6 km s−1 for NGC 2006 and νr = 310.2 ± 4 ± 6 km s−1 for SL 538. The second one is derived by comparing observed spectra with synthetic bootstrapped spectra yielding νr = 311.0 ± 0.6 km s−1 for NGC 2006 and νr = 309.4 ± 0.5 km s−1 for SL 538. Finally when spectra are directly compared, we find a Δν = 1.08 ± 0.47 km s−1. Full-spectrum spectral energy distribution fits reveal that the stellar population ages of both clusters lie in the range 13–21 Myr with a metallicity of Z = 0.008. We find indications for differences in the chemical abundance patterns as revealed by the helium absorption lines between the two clusters. The dynamical analysis of the system shows that the two clusters are likely to merge within the next ∼150 Myr to form a star cluster with a stellar mass of ∼104 M⊙. Conclusions. The NGC 2006–SL 538 cluster pair shows radial velocities, stellar population and dynamical parameters consistent with a gravitational bound entity and, considering that the velocity dispersion of the stars in LMC is ≲20 km s−1, we reject them as a chance alignment. We conclude that this is a genuine binary cluster pair, and we propose that their differences in ages and stellar population chemistry is most likely due to variances in their chemical enrichment history within their environment. We suggest that they may have formed in a loosely bound star-formation complex which saw initial fragmentation but then had its clusters become a gravitationally bound pair by tidal capture.


Author(s):  
Luciano Carotenuto ◽  
Vincenza Pace ◽  
Dina Bellizzi ◽  
Giovanna De Benedictis

Author(s):  
YK Wu ◽  
JL Mo ◽  
B Tang ◽  
JW Xu ◽  
B Huang ◽  
...  

In this research, the tribological and dynamical characteristics of a brake pad with multiple blocks are investigated using experimental and numerical methods. A dynamometer with a multiblock brake pad configuration on a brake disc is developed and a series of drag-type tests are conducted to study the brake squeal and wear behavior of a high-speed train brake system. Finite element analysis is performed to derive physical explanations for the observed experimental phenomena. The experimental and numerical results show that the rotational speed and braking force have important influences on the brake squeal; the trends of the multiblock and single-block systems are different. In the multiblock brake pad, the different blocks exhibit significantly different magnitudes of contact stresses and vibration accelerations. The blocks located in the inner and outer rings have higher vibration acceleration amplitudes and stronger vibration energies than the blocks located in the middle ring.


Author(s):  
Cuong Truong Ngoc ◽  
Xiao Xu ◽  
Hwan-Seong Kim ◽  
Duy Anh Nguyen ◽  
Sam-Sang You

This paper deals with three-dimensional (3D) model of competitive Lotka-Volterra equation to investigate nonlinear dynamics and control strategy of container terminal throughput and capacity. Dynamical behaviors are intensely explored by using eigenvalue evaluation, bifurcation analysis, and time-series data. The dynamical analysis is to show the stability with bifurcation of the competition and collaboration of multiple container terminals in the maritime transportation. Based on the chaotic analysis, the sliding mode control theory has been utilized for optimization of port operations under disruptions. Extensive numerical simulations have been conducted to validate the efficacy and reliability of the presented control algorithms. Particularly, the closed-loop system has been assessed through chaotic suppression and synchronization strategies for port management. Finally, the presented fundamental techniques can be utilized to provide managerial insights and solutions on efficient seaport operations that allow more timely and cost-effective decision making for port authorities in such a highly competitive environment.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 929
Author(s):  
Guiyun Liu ◽  
Jieyong Chen ◽  
Zhongwei Liang ◽  
Zhimin Peng ◽  
Junqiang Li

With the rapid development of science and technology, the application of wireless sensor networks (WSNs) is more and more widely. It has been widely concerned by scholars. Viruses are one of the main threats to WSNs. In this paper, based on the principle of epidemic dynamics, we build a SEIR propagation model with the mutated virus in WSNs, where E nodes are infectious and cannot be repaired to S nodes or R nodes. Subsequently, the basic reproduction number R0, the local stability and global stability of the system are analyzed. The cost function and Hamiltonian function are constructed by taking the repair ratio of infected nodes and the repair ratio of mutated infected nodes as optimization control variables. Based on the Pontryagin maximum principle, an optimal control strategy is designed to effectively control the spread of the virus and minimize the total cost. The simulation results show that the model has a guiding significance to curb the spread of mutated virus in WSNs.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.


Sign in / Sign up

Export Citation Format

Share Document