scholarly journals Azimuthal velocity shear within an Earthward fast flow – further evidence for magnetotail untwisting?

2015 ◽  
Vol 33 (3) ◽  
pp. 245-255 ◽  
Author(s):  
T. Pitkänen ◽  
M. Hamrin ◽  
P. Norqvist ◽  
T. Karlsson ◽  
H. Nilsson ◽  
...  

Abstract. It is well known that nonzero interplanetary magnetic field By conditions lead to a twisted magnetotail configuration. The plasma sheet is rotated around its axis and tail magnetic field lines are twisted, which causes an azimuthal displacement of their ionospheric footprints. According to the untwisting hypothesis, the untwisting of twisted field lines is suggested to influence the azimuthal direction of convective fast flows in the nightside geospace. However, there is a lack of in situ magnetospheric observations, which show actual signatures of the possible untwisting process. In this paper, we report detailed Cluster observations of an azimuthal flow shear across the neutral sheet associated with an Earthward fast flow on 5 September 2001. The observations show a flow shear velocity pattern with a V⊥y sign change, near the neutral sheet (Bx~0) within a fast flow during the neutral sheet flapping motion over the spacecraft. Firstly, this implies that convective fast flows may not generally be unidirectional across the neutral sheet, but may have a more complex structure. Secondly, in this event tail By and the flow shear are as expected by the untwisting hypothesis. The analysis of the flow shear reveals a linear dependence between Bx and V⊥y close to the neutral sheet and suggests that Cluster crossed the neutral sheet in the dawnward part of the fast flow channel. The magnetospheric observations are supported by the semi-empirical T96 and TF04 models. Furthermore, the ionospheric SuperDARN convection maps support the satellite observations proposing that the azimuthal component of the magnetospheric flows is enforced by a magnetic field untwisting. In summary, the observations give strong supportive evidence to the tail untwisting hypothesis. However, the T96 ionospheric mapping demonstrates the limitations of the model in mapping from a twisted tail.

2019 ◽  
Vol 488 (4) ◽  
pp. 5713-5727
Author(s):  
Kuldeep Singh ◽  
Indranil Chattopadhyay

ABSTRACT We study relativistic magnetized outflows using relativistic equation of state having variable adiabatic index (Γ) and composition parameter (ξ). We study the outflow in special relativistic magnetohydrodynamic regime, from sub-Alfvénic to super-fast domain. We showed that, after the solution crosses the fast point, magnetic field collimates the flow and may form a collimation-shock due to magnetic field pinching/squeezing. Such fast, collimated outflows may be considered as astrophysical jets. Depending on parameters, the terminal Lorentz factors of an electron–proton outflow can comfortably exceed few tens. We showed that due to the transfer of angular momentum from the field to the matter, the azimuthal velocity of the outflow may flip sign. We also study the effect of composition (ξ) on such magnetized outflows. We showed that relativistic outflows are affected by the location of the Alfvén point, the polar angle at the Alfvén point and also the angle subtended by the field lines with the equatorial plane, but also on the composition of the flow. The pair dominated flow experiences impressive acceleration and is hotter than electron–proton flow.


2019 ◽  
Vol 85 (1) ◽  
Author(s):  
C. B. Smiet ◽  
H. J. de Blank ◽  
T. A. de Jong ◽  
D. N. L. Kok ◽  
D. Bouwmeester

We study the resistive evolution of a localized self-organizing magnetohydrodynamic equilibrium. In this configuration the magnetic forces are balanced by a pressure force caused by a toroidal depression in the pressure. Equilibrium is attained when this low-pressure region prevents further expansion into the higher-pressure external plasma. We find that, for the parameters investigated, the resistive evolution of the structures follows a universal pattern when rescaled to resistive time. The finite resistivity causes both a decrease in the magnetic field strength and a finite slip of the plasma fluid against the static equilibrium. This slip is caused by a Pfirsch–Schlüter-type diffusion, similar to what is seen in tokamak equilibria. The net effect is that the configuration remains in magnetostatic equilibrium whilst it slowly grows in size. The rotational transform of the structure becomes nearly constant throughout the entire structure, and decreases according to a power law. In simulations this equilibrium is observed when highly tangled field lines relax in a high-pressure (relative to the magnetic field strength) environment, a situation that occurs when the twisted field of a coronal loop is ejected into the interplanetary solar wind. In this paper we relate this localized magnetohydrodynamic equilibrium to magnetic clouds in the solar wind.


2020 ◽  
Vol 492 (4) ◽  
pp. 4884-4891 ◽  
Author(s):  
Ya N Istomin ◽  
A A Gunya

ABSTRACT Centrifugal acceleration is due to the rotating poloidal magnetic field in the magnetosphere that creates the electric field which is orthogonal to the magnetic field. Charged particles with finite cyclotron radii can move along the electric field and receive energy. Centrifugal acceleration pushes particles to the periphery, where their azimuthal velocity reaches the speed of light. We calculated particle trajectories by numerical and analytical methods. The maximum obtained energies depend on the parameter of the particle magnetization κ, which is the ratio of rotation frequency of magnetic field lines in the magnetosphere ΩF to non-relativistic cyclotron frequency of particles ωc, κ = ΩF/ωc <<1, and on the parameter α which is the ratio of toroidal magnetic field BT to the poloidal one BP, α = BT/BP. It is shown that for small toroidal fields, α < κ1/4, the maximum Lorentz factor γm is only the square root of magnetization, γm = κ−1/2, while for large toroidal fields, α > κ1/4, the energy increases significantly, γm = κ−2/3. However, the maximum possible acceleration, γm = κ−1, is not achieved in the magnetosphere. For a number of active galactic nuclei, such as M87, maximum values of Lorentz factor for accelerated protons are found. Also, for special case of Sgr. A*, estimations of the maximum proton energy and its energy flux are obtained. They are in agreement with experimental data obtained by HESS Cherenkov telescope.


1968 ◽  
Vol 1 (3) ◽  
pp. 89-89
Author(s):  
G.F. Davies

Those solutions which have so far been obtained to the problem of a star with both rotation and a magnetic field have been for certain special cases, mostly time-independent. It is known that, except for stars with special rotation laws, a rotating star in hydrostatic equilibrium cannot maintain thermal equilibrium without generating slow meridional circulation of matter. It is also known that an axially symmetric field with no azimuthal component tends very strongly to keep the star in a state of isorotation, with the angular velocity constant along field lines. A magnetic field also tends to upset thermal equilibrium and produce meridional circulation. In the absence of rotation, an equilibrium poloidal field has recently been found for which there is no circulation. The present paper reports analogous equilibrium solutions for a star which is in uniform rotation.


2003 ◽  
Vol 69 (6) ◽  
pp. 541-550
Author(s):  
MANUEL NÚÑEZ

The evolution of a magnetic field line in two dimensions near a neutral sheet is analysed. It is found that the general features of this evolution are rather independent of any particular model, provided that the magnetic field is small and the current density does not vanish. The time of arrival of a field line to the neutral sheet as well as its breaking and reconnection are proved to be finite and to satisfy a simple formula whose main parameter is the resistivity, which may be a spatial function. The shape of the evolving field lines satisfies a differential equation whose solution in some simple cases is shown to agree with certain classical reconnection configurations. Hyperresistivity is found to be more often a hindrance than a positive contribution to the reconnection process.


Author(s):  
Charles F. Kennel

This chapter describes how the magnetosphere is shaped by the tangential shear stress exerted at the magnetopause by collisionless viscosity. In Section 4.2, we discuss the low-latitude boundary layer (LLBL), which contains plasma of solar wind origin that has been transported across the magnetopause current layer. The velocity shear in the LLBL drives field-aligned currents into the ionosphere on the morning side and out of the ionosphere on the evening side (Section 4.3). These currents are of the appropriate sense to drive two-cell convection in the highlatitude ionosphere. The footprint of the LLBL in the ionosphere to which the field aligned currents connect is clearly identifiable by its characteristic particle precipitation (Section 4.4). The shear in the LLBL also generates 1-20 mHz PC 4- 5 micropulsations whose polarizations, tailward propagation, and phase speeds are consistent with the Kelvin-Helmholtz (K-H) instability (Section 4.5). The K-H vortices may couple to “vortex auroras” in the local afternoon sector of the auroral oval (Section 4.6). Vortex auroral dissipation may be responsible for a morningevening asymmetry in the viscous interaction and its manifestations. Organized vortical flows have been observed not only next to the magnetopause, but also near the center of the plasma sheet, accompanied by local quasiperiodic magnetic field oscillations and PC 5 micropulsations on the ground (Section 4.7). In Section 4.8, we discuss observations of a thick boundary layer flow on closed field lines next to the magnetopause 220 RE downstream. This puts us in a position to estimate the rates of particle and energy injection into the magnetosphere due to the viscous interaction (Section 4.9). Spacecraft crossings of the magnetopause last from a few seconds to a few minutes and are characterized by a rapid, distinct rotation of the magnetic field and striking changes in plasma density, pressure, flow velocity, composition, and energetic particle distribution (Williams, 1979a; 1980; Williams et al., 1979). A broader boundary layer lies just inside the magnetopause. The so-called low-latitude boundary layer was first identified at 18 RE radial distance in the magnetotail using Vela 4B (Hones et al., 1972) and Vela 5 and 6 (Akasofu et al., 1973b) low-energy plasma measurements.


2006 ◽  
Vol 24 (7) ◽  
pp. 1931-1948 ◽  
Author(s):  
I. I. Vogiatzis ◽  
T. A. Fritz ◽  
Q.-G. Zong ◽  
E. T. Sarris

Abstract. Energetic electrons (E≥30 keV) travelling along and perpendicular to the magnetic field lines have been observed in the magnetotail at L~17:00 and 22:00 MLT during the recovery phase of a storm-time substorm on 7 October 2002. Three-dimensional electron distributions of the full unit sphere obtained from the IES/RAPID sensor system demonstrated a rather complicated and random behavior of the energetic electrons. Occasionally these electrons were appearing to travel parallel, perpendicular, or in both directions, relative to the magnetic field direction, forming in this way bi-directional, perpendicular-peaked, and mixed distributions. The electron enhancements occurred while the Cluster spacecraft were on closed field lines in the central plasma sheet approaching the neutral sheet from the northern tail lobe. Magnetic field and energetic particle measurements have been used from geosynchronous and Cluster satellites, in order to describe the general context of the event and then give a possible interpretation regarding the occurrence of the electron anisotropies observed by the IES/RAPID spectrometer on board Cluster. According to geosynchronous measurements an electron dispersionless ejection is very well correlated with a dipolar re-configuration of the magnetic field. The latter fact supports the idea that electrons and, in general, particle ejections at geosynchronous altitude are directly related to electric fields arising from field dipolarization caused by current disruption. Also, having as a main objective the understanding of the way 3-D electron distributions are formed, we have analyzed electron energy spectra along and perpendicular to the magnetic field direction, demonstrating the fact that the electron population consists of two distinct components acting independently and in a random manner relative to each other. This leads to the conclusion that these two electron populations along and perpendicular to the field are generated at different remote locations at different rates. The main conclusion of the present paper is that the perpendicular-peaked electron enhancements (electrons with pitch angle around 90 degrees, subjected mainly to curvature drift) observed by Cluster are produced in a remote location duskward of the satellite location, due to the longitudinal and tailward expansion of a current disruption region, and subsequently transported to the Cluster location by means of curvature drift. On the other hand, bi-directional electrons (electrons with pitch angle around 0 and 180 degrees, bouncing mainly along the field lines) are believed to be generated in the vicinity of the neutral sheet or around an X-type region, as suggested by a plethora of previous studies. Finally, in the Discussion section, we make an attempt to present in a more thorough way the substorm model developed by Vogiatzis et al. (2005), which is intimately related to the importance of X-line formation for the initiation of a substorm.


2021 ◽  
Vol 923 (1) ◽  
pp. 72
Author(s):  
Sudheer K. Mishra ◽  
Balveer Singh ◽  
A. K. Srivastava ◽  
Pradeep Kayshap ◽  
B. N. Dwivedi

Abstract We use multiwavelength imaging observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory to study the evolution of the Kelvin–Helmholtz (K–H) instability in a fan-spine magnetic field configuration. This magnetic topology exists near an active region AR12297 and is rooted in a nearby sunspot. In this magnetic configuration, two layers of cool plasma flow in parallel and interact with each other inside an elongated spine. The slower plasma flow (5 km s−1) is the reflected stream along the spine’s field lines from the top, which interacts with the impulsive plasma upflows (114–144 km s−1) from below. This process generates a shear motion and subsequent evolution of the K–H instability. The amplitude and characteristic wavelength of the K–H unstable vortices increase, satisfying the criterion of the fastest-growing mode of this instability. We also describe how the velocity difference between two layers and the velocity of K–H unstable vortices are greater than the Alfvén speed in the second denser layer, which also satisfies the criterion of the growth of the K–H instability. In the presence of the magnetic field and sheared counterstreaming plasma as observed in the fan-spine topology, we estimate the parametric constant Λ ≥ 1, which confirms the dominance of velocity shear and the evolution of the linear phase of the K–H instability. This observation indicates that in the presence of complex magnetic field structuring and flows, the fan-spine configuration may evolve into rapid heating, while the connectivity changes due to the fragmentation via the K–H instability.


2000 ◽  
Vol 12 (2) ◽  
pp. 145-153 ◽  
Author(s):  
R. Tabet ◽  
H. Imrane ◽  
D. Saifaoui ◽  
A. Dezairi ◽  
F. Miskane

1990 ◽  
Vol 44 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Hiromitsu Hamabata

Exact wave solutions of the nonlinear jnagnetohydrodynamic equations for a highly conducting incompressible fluid are obtained for the cases where the physical quantities are independent of one Cartesian co-ordina.te and for where they vary three-dimensionally but both the streamlines and magnetic field lines lie in parallel planes. It is shown that there is a class of exact wave solutions with large amplitude propagating in a straight but non-uniform magnetic field with constant or non-uniform velocity.


Sign in / Sign up

Export Citation Format

Share Document