scholarly journals The connection between halo concentrations and assembly histories: a probe of gravity?

2019 ◽  
Vol 489 (4) ◽  
pp. 4658-4668
Author(s):  
Piotr Oleśkiewicz ◽  
Carlton M Baugh ◽  
Aaron D Ludlow

ABSTRACT We use two high-resolution N-body simulations, one assuming general relativity (GR) and the other the Hu–Sawicki form of f(R) gravity with $\vert \bar{f}_{\mathrm{ R}} \vert = 10^{-6}$, to investigate the concentration–formation time relation of dark matter haloes. We assign haloes to logarithmically spaced mass bins, and fit median density profiles and extract median formation times in each bin. At fixed mass, haloes in modified gravity are more concentrated than those in GR, especially at low masses and low redshift, and do not follow the concentration–formation time relation seen in GR. We assess the sensitivity of the relation to how concentration and formation time are defined, as well as to the segregation of the halo population by the amount of gravitational screening. We find a clear difference between halo concentrations and assembly histories displayed in modified gravity and those in GR. Existing models for the mass–concentration–redshift relation that have gained success in cold and warm dark matter models require revision in f(R) gravity.

Author(s):  
Syed Abbas ◽  
Nasim Akhtar ◽  
Danish Alam

At present there is a renewed interest in theories of ”modified” gravity. Here, under a more drastic modification enforced by Galilei group, we obtain a completely new gravitational structure, and which exists in addition to the already available general relativity of today. Correlated with this, we show that in addition, there is a new ”modified” quantum mechanics, in as much as it exists as an independent and new ”pure” non-relativistic quantum me- chanics, and which has no relativistic counterpart. This is in addition to the present quantum mechanics, where the relativistic and non-relativistic structures are counterparts of each other. The above holds, firstly due to the correlation between Galilei group and quantum mechanics. These math- ematical conclusions are consolidated by the fact that there exists a physical Majorana interaction between each neutron- proton pairs in nuclei. Galilei invariance of Majorana exchange in Majorana interaction, shows that the mass here is of pure gravitational nature, and which is immune to the other three forces. This makes an amazing connection between the gravitational force and the quantum mechanics. This pure gravitational mass would man- ifest itself as dark matter of the universe. It is our new modified gravity that generates the dark matter.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950157 ◽  
Author(s):  
Tomohiro Inagaki ◽  
Yamato Matsuo ◽  
Hiroki Sakamoto

The logarithmic [Formula: see text]-corrected [Formula: see text] gravity is investigated as a prototype model of modified gravity theories with quantum corrections. By using the auxiliary field method, the model is described by the general relativity with a scalaron field. The scalaron field can be identified as an inflaton at the primordial inflation era. It is also one of the dark matter candidates in the dark energy (DE) era. It is found that a wide range of the parameters is consistent with the current observations of CMB fluctuations, DE and dark matter.


2004 ◽  
Vol 220 ◽  
pp. 353-358 ◽  
Author(s):  
Alberto D. Bolatto ◽  
Joshua D. Simon ◽  
Adam Leroy ◽  
Leo Blitz

We present observations and analysis of rotation curves and dark matter halo density profiles in the central regions of four nearby dwarf galaxies. This observing program has been designed to overcome some of the limitations of other rotation curve studies that rely mostly on longslit spectra. We find that these objects exhibit the full range of central density profiles between ρ ∝ r0 (constant density) and ρ ∝ r–1 (NFW halo). This result suggests that there is a distribution of central density slopes rather than a unique halo density profile.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Christian G. Böhmer ◽  
Nicola Tamanini ◽  
Matthew Wright

We consider a modification of General Relativity motivated by the treatment of anisotropies in Continuum Mechanics. The Newtonian limit of the theory is formulated and applied to galactic rotation curves. By assuming that the additional structure of spacetime behaves like a Newtonian gravitational potential for small deviations from isotropy, we are able to recover the Navarro–Frenk–White profile of dark matter halos by a suitable identification of constants. We consider the Burkert profile in the context of our model and also discuss rotation curves more generally.


2014 ◽  
Vol 11 (S308) ◽  
pp. 555-560 ◽  
Author(s):  
Yan-Chuan Cai ◽  
Nelson Padilla ◽  
Baojiu Li

AbstractWe investigate void properties inf(R)models using N-body simulations, focusing on their differences from General Relativity (GR) and their detectability. In the Hu-Sawickif(R)modified gravity (MG) models, the halo number density profiles of voids are not distinguishable from GR. In contrast, the samef(R)voids are more empty of dark matter, and their profiles are steeper. This can in principle be observed by weak gravitational lensing of voids, for which the combination of a spectroscopic redshift and a lensing photometric redshift survey over the same sky is required. Neglecting the lensing shape noise, thef(R)model parameter amplitudesfR0=10-5and 10-4may be distinguished from GR using the lensing tangential shear signal around voids by 4 and 8 σ for a volume of 1 (Gpc/h)3. The line-of-sight projection of large-scale structure is the main systematics that limits the significance of this signal for the near future wide angle and deep lensing surveys. For this reason, it is challenging to distinguishfR0=10-6from GR. We expect that this can be overcome with larger volume. The halo void abundance being smaller and the steepening of dark matter void profiles inf(R)models are unique features that can be combined to break the degeneracy betweenfR0and σ8.


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2555-2562 ◽  
Author(s):  
KIRILL KRASNOV ◽  
YURI SHTANOV

We describe how a certain simple modification of general relativity, in which the local cosmological constant is allowed to depend on the space–time curvature, predicts the existence of halos of modified gravity surrounding spherically symmetric objects. We show that the gravitational mass of an object weighed together with its halo can be much larger than its gravitational mass as seen from inside the halo. This effect could provide an alternative explanation of the dark-matter phenomenon in galaxies. In this case, the local cosmological constant in the solar system must be some six orders of magnitude larger than its cosmic value obtained in the supernova type Ia experiments. This is well within the current experimental bounds, but may be directly observable in future high-precision experiments.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743010 ◽  
Author(s):  
C. Sivaram

For Newtonian dynamics to hold over galactic scales, large amounts of dark matter (DM) are required which would dominate cosmic structures. Accounting for the strong observational evidence that the universe is accelerating requires the presence of an unknown dark energy (DE) component constituting about 70% of the matter. Several ingenious ongoing experiments to detect the DM particles have so far led to negative results. Moreover, the comparable proportions of the DM and DE at the present epoch appear unnatural and not predicted by any theory. For these reasons, alternative ideas like MOND and modification of gravity or general relativity over cosmic scales have been proposed. It is shown in this paper that these alternate ideas may not be easily distinguishable from the usual DM or DE hypotheses. Specific examples are given to illustrate this point that the modified theories are special cases of a generalized DM paradigm.


2008 ◽  
Vol 136 (6) ◽  
pp. 2761-2781 ◽  
Author(s):  
Se-Heon Oh ◽  
W. J. G. de Blok ◽  
Fabian Walter ◽  
Elias Brinks ◽  
Robert C. Kennicutt

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 877
Author(s):  
Elena Arbuzova ◽  
Alexander Dolgov ◽  
Rajnish Singh

Evolution and heating of the universe in R2-modified gravity are considered. It is shown that the universe’s history can be separated into four different epochs: (1) inflation, (2) heating due to curvature oscillations (scalaron decay), (3) transition to matter dominated period, and (4) conventional cosmology governed by General Relativity. Cosmological density of dark matter (DM) particles for different decay channels of the scalaron is calculated. The bounds on the masses of DM particles are derived for the following dominant decay modes: to minimally coupled scalars, to massive fermions, and to gauge bosons.


2019 ◽  
Vol 490 (3) ◽  
pp. 3493-3497
Author(s):  
Jonas Petersen ◽  
Martin Rosenlyst

ABSTRACTIn this study a simple toy model solution to the missing gravity problem on galactic scales is reverse engineered from galactic data via imposing broad assumptions. It is shown that the toy model solution can be written in terms of baryonic quantities, is highly similar to pseudo-isothermal dark matter on galactic scales and can accommodate the same observations. In this way, the toy model solution is similar to MOND modified gravity in the Bekenstein–Milgrom formulation. However, it differs in the similarity to pseudo-isothermal dark matter and in the functional form. In loose terms, it is shown that pseudo-isothermal dark matter can be written in terms of baryonic quantities. The required form suggests that it may be worth looking into a mechanism that can increase the magnitude of the post-Newtonian correction from general relativity for low accelerations.


Sign in / Sign up

Export Citation Format

Share Document