scholarly journals SN 2015an: a normal luminosity type II supernova with low expansion velocity at early phases

2019 ◽  
Vol 490 (2) ◽  
pp. 1605-1619
Author(s):  
Raya Dastidar ◽  
Kuntal Misra ◽  
Stefano Valenti ◽  
Jamison Burke ◽  
Griffin Hosseinzadeh ◽  
...  

ABSTRACT We present the photometry and spectroscopy of SN 2015an, a type II Supernova (SN) in IC 2367. The recombination phase of the SN lasts up to 120 d, with a decline rate of 1.24 mag/100d, higher than the typical SNe IIP. The SN exhibits bluer colours than most SNe II, indicating higher ejecta temperatures. The absolute V-band magnitude of SN 2015an at 50 d is −16.83 ± 0.04 mag, pretty typical for SNe II. However, the 56Ni mass yield, estimated from the tail V-band light curve to be 0.021 ± 0.010 M⊙, is comparatively low. The spectral properties of SN 2015an are atypical, with low H α expansion velocity and presence of high-velocity component of H α at early phases. Moreover, the continuum exhibits excess blue flux up to 50 d, which is interpreted as a progenitor metallicity effect. The high-velocity feature indicates ejecta-circumstellar material interaction at early phases. The semi-analytical modelling of the bolometric light curve yields a total ejected mass of 12 M⊙, a pre-SN radius of 388 R⊙ and explosion energy of 1.8 foe.

2019 ◽  
Vol 486 (2) ◽  
pp. 2850-2872 ◽  
Author(s):  
Raya Dastidar ◽  
Kuntal Misra ◽  
Mridweeka Singh ◽  
D K Sahu ◽  
A Pastorello ◽  
...  

Abstract We present photometry, polarimetry, and spectroscopy of the Type II supernova ASASSN-16ab/SN 2016B in PGC 037392. The photometric and spectroscopic follow-up commenced about 2 weeks after shock breakout and continued until nearly 6 months. The light curve of SN 2016B exhibits intermediate properties between those of Type IIP and IIL. The early decline is steep (1.68 ± 0.10 mag 100 d−1), followed by a shallower plateau phase (0.47 ± 0.24 mag 100 d−1). The optically thick phase lasts for 118 d, similar to Type IIP. The 56Ni mass estimated from the radioactive tail of the bolometric light curve is 0.082 ± 0.019 M⊙. High-velocity component contributing to the absorption trough of H α and H β in the photospheric spectra are identified from the spectral modelling from about 57–97 d after the outburst, suggesting a possible SN ejecta and circumstellar material interaction. Such high-velocity features are common in the spectra of Type IIL supernovae. By modelling the true bolometric light curve of SN 2016B, we estimated a total ejected mass of ∼15 M⊙, kinetic energy of ∼1.4 foe, and an initial radius of ∼400 R⊙.


2020 ◽  
Vol 494 (4) ◽  
pp. 5882-5901 ◽  
Author(s):  
Ó Rodríguez ◽  
G Pignata ◽  
J P Anderson ◽  
T J Moriya ◽  
A Clocchiatti ◽  
...  

ABSTRACT We present optical and near-infrared data of three Type II supernovae (SNe II), SN 2008bm, SN 2009aj, and SN 2009au. These SNe display the following common characteristics: signs of early interaction of the ejecta with circumstellar material (CSM), blue B − V colours, weakness of metal lines, low expansion velocities, and V-band absolute magnitudes 2–3 mag brighter than those expected for normal SNe II based on their expansion velocities. Two more SNe reported in the literature (SN 1983K and LSQ13fn) share properties similar to our sample. Analysing this set of five SNe II, which are luminous for their low expansion velocities (LLEV), we find that their properties can be reproduced assuming ejecta–CSM interaction that lasts between 4 and 11 weeks post-explosion. The contribution of this interaction to the radiation field seems to be the dominant component determining the observed weakness of metal lines in the spectra rather than the progenitor metallicity. Based on hydrodynamic simulations, we find that the interaction of the ejecta with a CSM of ∼3.6 M⊙ can reproduce the light curves and expansion velocities of SN 2009aj. Using data collected by the Chilean Automatic Supernova Search, we estimate an upper limit for the LLEV SNe II fraction to be 2–4 per cent of all normal SNe II. With the current data set, it is not clear whether the LLEV events are a separated class of SNe II with a different progenitor system, or whether they are the extreme of a continuum mediated by CSM interaction with the rest of the normal SN II population.


2020 ◽  
Vol 499 (1) ◽  
pp. 974-992
Author(s):  
C P Gutiérrez ◽  
A Pastorello ◽  
A Jerkstrand ◽  
L Galbany ◽  
M Sullivan ◽  
...  

ABSTRACT We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN-17qp). Located in an extremely faint galaxy (Mr = −10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (∼6−8 d) to a peak of ${\it M}^{\rm max}_{g}= -17.84$ mag, followed by a very rapid decline of 7.94 ± 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of 56Co (between 100 and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 56Ni is ∼0.059 ± 0.003 M⊙. The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) Hα strong phase (<200 d); (2) Hα weak phase (between 200 and 350 d); and (3) Hα broad phase (>500 d). We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15–17 M⊙.


2020 ◽  
Vol 493 (2) ◽  
pp. 1761-1781 ◽  
Author(s):  
T M Reynolds ◽  
M Fraser ◽  
S Mattila ◽  
M Ergon ◽  
L Dessart ◽  
...  

ABSTRACT We present observations of the unusually luminous Type II supernova (SN) 2016gsd. With a peak absolute magnitude of V = −19.95 ± 0.08, this object is one of the brightest Type II SNe, and lies in the gap of magnitudes between the majority of Type II SNe and the superluminous SNe. Its light curve shows little evidence of the expected drop from the optically thick phase to the radioactively powered tail. The velocities derived from the absorption in H α are also unusually high with the blue edge tracing the fastest moving gas initially at 20 000 km s−1, and then declining approximately linearly to 15 000 km s−1 over ∼100 d. The dwarf host galaxy of the SN indicates a low-metallicity progenitor which may also contribute to the weakness of the metal lines in its spectra. We examine SN 2016gsd with reference to similarly luminous, linear Type II SNe such as SNe 1979C and 1998S, and discuss the interpretation of its observational characteristics. We compare the observations with a model produced by the jekyll code and find that a massive star with a depleted and inflated hydrogen envelope struggles to reproduce the high luminosity and extreme linearity of SN 2016gsd. Instead, we suggest that the influence of interaction between the SN ejecta and circumstellar material can explain the majority of the observed properties of the SN. The high velocities and strong H α absorption present throughout the evolution of the SN may imply a circumstellar medium configured in an asymmetric geometry.


2022 ◽  
Vol 924 (1) ◽  
pp. 15
Author(s):  
W. V. Jacobson-Galán ◽  
L. Dessart ◽  
D. O. Jones ◽  
R. Margutti ◽  
D. L. Coppejans ◽  
...  

Abstract We present panchromatic observations and modeling of supernova (SN) 2020tlf, the first normal Type II-P/L SN with confirmed precursor emission, as detected by the Young Supernova Experiment transient survey. Pre-SN activity was detected in riz-bands at −130 days and persisted at relatively constant flux until first light. Soon after discovery, “flash” spectroscopy of SN 2020tlf revealed narrow, symmetric emission lines that resulted from the photoionization of circumstellar material (CSM) shed in progenitor mass-loss episodes before explosion. Surprisingly, this novel display of pre-SN emission and associated mass loss occurred in a red supergiant (RSG) progenitor with zero-age main-sequence mass of only 10–12 M ⊙, as inferred from nebular spectra. Modeling of the light curve and multi-epoch spectra with the non-LTE radiative-transfer code CMFGEN and radiation-hydrodynamical code HERACLES suggests a dense CSM limited to r ≈ 1015 cm, and mass-loss rate of 10−2 M ⊙ yr−1. The luminous light-curve plateau and persistent blue excess indicates an extended progenitor, compatible with an RSG model with R ⋆ = 1100 R ⊙. Limits on the shock-powered X-ray and radio luminosity are consistent with model conclusions and suggest a CSM density of ρ < 2 × 10−16 g cm−3 for distances from the progenitor star of r ≈ 5 × 1015 cm, as well as a mass-loss rate of M ̇ < 1.3 × 10 − 5 M ☉ yr − 1 at larger distances. A promising power source for the observed precursor emission is the ejection of stellar material following energy disposition into the stellar envelope as a result of gravity waves emitted during either neon/oxygen burning or a nuclear flash from silicon combustion.


2013 ◽  
Vol 9 (S296) ◽  
pp. 332-333
Author(s):  
Joseph P Anderson

AbstractWe present an analysis of V-band light-curves morphologies of type II supernovae (SNII). This investigation is achieved through photometry of more than 100 SNe including a first analysis of SNII data obtained by the Carnegie Supernova Project (CSP). We define the important observables and present correlations between SNe absolute magnitudes and light-curve decline rates: we find that brighter SNII tend to have faster declining light-curves at all epochs.


2019 ◽  
Vol 488 (3) ◽  
pp. 4239-4257 ◽  
Author(s):  
P J Pessi ◽  
G Folatelli ◽  
J P Anderson ◽  
M Bersten ◽  
C Burns ◽  
...  

ABSTRACT Type II supernovae (SNe II) show strong hydrogen features in their spectra throughout their whole evolution, while type IIb supernovae (SNe IIb) spectra evolve from dominant hydrogen lines at early times to increasingly strong helium features later on. However, it is currently unclear whether the progenitors of these SN types form a continuum in pre-SN hydrogen mass or whether they are physically distinct. SN light-curve morphology directly relates to progenitor and explosion properties such as the amount of hydrogen in the envelope, the pre-SN radius, the explosion energy, and the synthesized mass of radioactive material. In this work, we study the morphology of the optical-wavelength light curves of hydrogen-rich SNe II and hydrogen-poor SNe IIb to test whether an observational continuum exists between the two. Using a sample of 95 SNe (73 SNe II and 22 SNe IIb), we define a range of key observational parameters and present a comparative analysis between both types. We find a lack of events that bridge the observed properties of SNe II and IIb. Light-curve parameters such as rise times and post-maximum decline rates and curvatures clearly separate both SN types and we therefore conclude that there is no continuum, with the two SN types forming two observationally distinct families. In the V band a rise time of 17 d (SNe II lower and SNe IIb higher), and a magnitude difference between 30 and 40 d post-explosion of 0.4 mag (SNe II lower and SNe IIb higher) serve as approximate thresholds to differentiate both types.


2019 ◽  
Vol 490 (2) ◽  
pp. 2799-2821 ◽  
Author(s):  
T de Jaeger ◽  
W Zheng ◽  
B E Stahl ◽  
A V Filippenko ◽  
T G Brink ◽  
...  

ABSTRACT In this work, BVRI light curves of 55 Type II supernovae (SNe II) from the Lick Observatory Supernova Search programme obtained with the Katzman Automatic Imaging Telescope and the 1 m Nickel telescope from 2006 to 2018 are presented. Additionally, more than 150 spectra gathered with the 3 m Shane telescope are published. We conduct an analyse of the peak absolute magnitudes, decline rates, and time durations of different phases of the light and colour curves. Typically, our light curves are sampled with a median cadence of 5.5 d for a total of 5093 photometric points. In average, V-band plateau declines with a rate of 1.29 mag (100 d)−1, which is consistent with previously published samples. For each band, the plateau slope correlates with the plateau length and the absolute peak magnitude: SNe II with steeper decline have shorter plateau duration and are brighter. A time-evolution analysis of spectral lines in term of velocities and pseudo-equivalent widths is also presented in this paper. Our spectroscopic sample ranges between 1 and 200 d post-explosion and has a median ejecta expansion velocity at 50 d post-explosion of 6500 km s−1 (H α line) and a standard dispersion of 2000 km s−1. Nebular spectra are in good agreement with theoretical models using a progenitor star having a mass &lt;16M⊙. All the data are available to the community and will help to understand SN II diversity better, and therefore to improve their utility as cosmological distance indicators.


2014 ◽  
Vol 10 (S306) ◽  
pp. 330-332
Author(s):  
Lluís Galbany

AbstractWe present a Principal Component Analysis (PCA) of the V band light-curves of a sample of more than 100 nearby Core collapse supernovae (CC SNe) from [Anderson et al. (2014)]. We used different reference epochs in order to extract the common properties of these light-curves and searched for correlations to some physical parameters such as the burning of 56Ni, and morphological light-curve parameters such as the length of the plateau, the stretch of the light-curve, and the decrements in brightness after maximum and after the plateau. We also used these similarities to create SNe II light-curve templates that will be used in the future for standardize these objects and determine cosmological distances.


2021 ◽  
Vol 502 (3) ◽  
pp. 4112-4124
Author(s):  
Umut Burgaz ◽  
Keiichi Maeda ◽  
Belinda Kalomeni ◽  
Miho Kawabata ◽  
Masayuki Yamanaka ◽  
...  

ABSTRACT Photometric and spectroscopic observations of Type Ia supernova (SN) 2017fgc, which cover the period from −12 to + 137 d since the B-band maximum are presented. SN 2017fgc is a photometrically normal SN Ia with the luminosity decline rate, Δm15(B)true  = 1.10 ± 0.10 mag. Spectroscopically, it belongs to the high-velocity (HV) SNe Ia group, with the Si ii λ6355 velocity near the B-band maximum estimated to be 15 200 ± 480 km s−1. At the epochs around the near-infrared secondary peak, the R and I bands show an excess of ∼0.2-mag level compared to the light curves of the normal velocity (NV) SNe Ia. Further inspection of the samples of HV and NV SNe Ia indicates that the excess is a generic feature among HV SNe Ia, different from NV SNe Ia. There is also a hint that the excess is seen in the V band, both in SN 2017fgc and other HV SNe Ia, which behaves like a less prominent shoulder in the light curve. The excess is not obvious in the B band (and unknown in the U band), and the colour is consistent with the fiducial SN colour. This might indicate that the excess is attributed to the bolometric luminosity, not in the colour. This excess is less likely caused by external effects, like an echo or change in reddening but could be due to an ionization effect, which reflects an intrinsic, either distinct or continuous, difference in the ejecta properties between HV and NV SNe Ia.


Sign in / Sign up

Export Citation Format

Share Document