scholarly journals Pulsation in the white dwarf HE 1017−1352: confirmation of the class of hot DAV stars

2020 ◽  
Vol 497 (1) ◽  
pp. L24-L29
Author(s):  
Alejandra D Romero ◽  
L Antunes Amaral ◽  
S O Kepler ◽  
L Fraga ◽  
D Kurtz ◽  
...  

ABSTRACT We report the detection of periodic variations on the $T_\mathrm{eff}\simeq 32\, 000$ K DA white dwarf star HE 1017−1352. We obtained time series photometry using the 4.1-m Southern Astrophysical Research telescope on three separate nights for a total of 16.8 h. From the frequency analysis, we found four periods of 605, 556, 508, and 869 s with significant amplitudes above the 1/1000 false alarm probability detection limit. The detected modes are compatible with low harmonic degree g-mode non-radial pulsations with radial order higher than ∼9. This detection confirms the pulsation nature of HE 1017−1352 and thus the existence of the new pulsating class of hot DA white dwarf stars. In addition, we detect a long period of 1.52 h, compatible with a rotation period of DA white dwarf stars.

1992 ◽  
Vol 151 ◽  
pp. 461-464
Author(s):  
J.-E. Solheim

This group of stars consists of 4 systems, also called helium cataclysmics. Three of them show photometric variations and have been studied by the Whole Earth Telescope (WET), which have revealed multiperiodic light curves showing the signature of g-mode non-radial pulsations on the accreting star. The combination of accretion and g-mode pulsations gives a unique opportunity to test models for the accreator's structural changes in response to accretion. IUE-spectra provide additional physical parameters.


1989 ◽  
Vol 114 ◽  
pp. 384-387
Author(s):  
James Liebert ◽  
F. Wesemael ◽  
D. Husfeld ◽  
R. Wehrse ◽  
S. G. Starrfield ◽  
...  

First reported at the IAU Colloquium No. 53 on White Dwarfs (McGraw et al. 1979), PG 1159-035 (GW Vir) is the prototype of a new class of very hot, pulsating, pre-white dwarf stars. It shows complicated, nonradial pulsation modes which have been studied exhaustively, both observationally and theoretically. The effective temperature has been crudely estimated as 100,000 K with log g ~ 7 (Wesemael, Green and Liebert 1985, hereafter WGL).


Science ◽  
2019 ◽  
Vol 364 (6435) ◽  
pp. 66-69 ◽  
Author(s):  
Christopher J. Manser ◽  
Boris T. Gänsicke ◽  
Siegfried Eggl ◽  
Mark Hollands ◽  
Paula Izquierdo ◽  
...  

Many white dwarf stars show signs of having accreted smaller bodies, implying that they may host planetary systems. A small number of these systems contain gaseous debris discs, visible through emission lines. We report a stable 123.4-minute periodic variation in the strength and shape of the Ca ii emission line profiles originating from the debris disc around the white dwarf SDSS J122859.93+104032.9. We interpret this short-period signal as the signature of a solid-body planetesimal held together by its internal strength.


2011 ◽  
Vol 77 (5) ◽  
pp. 571-575 ◽  
Author(s):  
P. K. SHUKLA ◽  
D. A. MENDIS ◽  
S. I. KRASHENINNIKOV

AbstractWe discuss the dispersive properties of low-frequency electromagnetic (EM) perturbations in the magnetized core of self-gravitating white dwarf stars with ultra-relativistic degenerate electrons. For our purposes, we derive a dispersion relation by using the hydrodynamic equations for the ions under the action of EM and self-gravitating forces, and the inertialess electrons under the action of EM forces and the gradient of the ultra-relativistic pressure. The dispersion relation admits stability of a white dwarf star against a class of EM perturbations whose wavelengths are shorter than 15000 km.


1972 ◽  
Vol 239 (88) ◽  
pp. 2-7 ◽  
Author(s):  
BRIAN WARNER ◽  
EDWARD L. ROBINSON

1987 ◽  
Vol 93 ◽  
pp. 785-794
Author(s):  
J.-E. Solheim ◽  
O. Kjeldseth-Moe

AbstractThe close binary system Am CVn consists of two helium white dwarf stars in close orbit. Strong flickering in the optical light curve and the observed spin-up in the rotation period indicate that mass transfer takes place (Solheim et al., 1984). The optical spectrum shows broad helium absorption lines (Robinson and Faulkner, 1975) sometimes partly filled in by emission (Voikhanskaya, 1982). The optical spectrum shows no sign of hydrogen, and the line profiles are interpreted as due to an accretion disk of intermediate angle of inclination with a temperature of the order of 20.000 K (Robinson and Faulkner, 1975). Another possibility is direct accretion onto a magnetized BD white dwarf (Voikhanskaya, 1982). In the latter case a magnetic field B ≃ 106 to 109 gauss is needed. Voikhanskaya also reports significant changes in the absorption line profiles from 1978 to 1980.


1989 ◽  
Vol 114 ◽  
pp. 296-299
Author(s):  
J. L. Provencal ◽  
J. C. Clemens ◽  
G. Henry ◽  
B. P. Hine ◽  
R. E. Nather ◽  
...  

White dwarf stars provide important boundary conditions for the understanding of stellar evolution. An adequate understanding of even these simple stars is impossible without detailed knowledge of their interiors. PG1346+082, an interacting binary white dwarf system, provides a unique opportunity to view the interior of one degenerate as it is brought to light in the accretion disk of the second star as the primary strips material from its less massive companion (see Wood et at. 1987).PG1346+082 is a photometric variable with a four magnitude variation over a four to five day quasi-period. A fast Fourier transform (FFT) of the light curve shows a complex, time-dependent structure of harmonics. PG1346+082 exhibits flickering – the signature of mass transfer. The optical spectra of the system contain weak emission features during minimum and broad absorption at all other times. This could be attributed to pressure broadening in the atmosphere of a compact object, or to a combination of pressure broadening and doppler broadening in a disk surrounding the compact accretor. No hydrogen lines are observed and the spectra are dominated by neutral helium. The spectra also display variable asymmetric line profiles.


2008 ◽  
Author(s):  
M. Christova ◽  
N. F. Allard ◽  
J. F. Kielkopf ◽  
D. Homeier ◽  
F. Allard ◽  
...  

2004 ◽  
Vol 602 (2) ◽  
pp. L109-L112 ◽  
Author(s):  
D. E. Winget ◽  
D. J. Sullivan ◽  
T. S. Metcalfe ◽  
S. D. Kawaler ◽  
M. H. Montgomery

2017 ◽  
Vol 598 ◽  
pp. A109 ◽  
Author(s):  
N. Giammichele ◽  
S. Charpinet ◽  
P. Brassard ◽  
G. Fontaine

Sign in / Sign up

Export Citation Format

Share Document