scholarly journals Towards a deeper understanding of the physics driving galaxy quenching – inferring trends in the gas content via extinction

Author(s):  
Joanna M Piotrowska ◽  
Asa F L Bluck ◽  
Roberto Maiolino ◽  
Alice Concas ◽  
Yingjie Peng

Abstract In order to investigate the importance of different proposed quenching mechanisms, we use an indirect method to estimate gas masses for ∼62,000 SDSS DR7 galaxies. We infer gas surface densities from dust column densities as traced by extinction within the fibre, applying a metallicity correction to account for varying dust-to-gas ratios. We find that both gas fraction and star formation efficiency (SFE) decrease moving away from the star forming main sequence (MS)towards quiescence for all galaxy masses. We further show that both quantities correlate similarly strongly with the departure from the MS, implying the need for any physical model of quenching to invoke a change in both gas fraction and SFE. Our results call for a better understanding of the physical processes driving the decrease in star formation efficiency, which has received relatively little attention in the theory of quenching until now.

2015 ◽  
Vol 11 (S315) ◽  
pp. 240-246
Author(s):  
Francoise Combes ◽  

AbstractThe cosmic star formation rate density first increases with time towards a pronounced peak 10 Gyrs ago (or z=1-2) and then slows down, dropping by more than a factor 10 since z=1. The processes at the origin of the star formation quenching are not yet well identified: either the gas is expelled by supernovae and AGN feedback, or prevented to inflow. Morphological transformation or environment effects are also invoked. Recent IRAM/NOEMA and ALMA results are reviewed about the molecular content of galaxies and its dynamics, as a function of redshift. Along the main sequence of massive star forming galaxies, the gas fraction was higher in the past (up to 80%), and galaxy disks were more unstable and more turbulent. The star formation efficiency increases with redshift, or equivalently the depletion time decreases, whatever the position of galaxies, either on the main sequence or above. Attempts have been made to determine the cosmic evolution of the H2 density, but deeper ALMA observations are needed to effectively compare with models.


2020 ◽  
Vol 493 (2) ◽  
pp. 1982-1995 ◽  
Author(s):  
Steven Janowiecki ◽  
Barbara Catinella ◽  
Luca Cortese ◽  
Amelie Saintonge ◽  
Jing Wang

ABSTRACT We use H i and H2 global gas measurements of galaxies from xGASS and xCOLD GASS to investigate quenching paths of galaxies below the Star forming main sequence (SFMS). We show that the population of galaxies below the SFMS is not a 1:1 match with the population of galaxies below the H i and H2 gas fraction scaling relations. Some galaxies in the transition zone (TZ) 1σ below the SFMS can be as H i-rich as those in the SFMS, and have on average longer gas depletion time-scales. We find evidence for environmental quenching of satellites, but central galaxies in the TZ defy simple quenching pathways. Some of these so-called ‘quenched’ galaxies may still have significant gas reservoirs and be unlikely to deplete them any time soon. As such, a correct model of galaxy quenching cannot be inferred with star formation rate (or other optical observables) alone, but must include observations of the cold gas. We also find that internal structure (particularly, the spatial distribution of old and young stellar populations) plays a significant role in regulating the star formation of gas-rich isolated TZ galaxies, suggesting the importance of bulges in their evolution.


2020 ◽  
Vol 496 (3) ◽  
pp. 2531-2541
Author(s):  
P Popesso ◽  
A Concas ◽  
L Morselli ◽  
G Rodighiero ◽  
A Enia ◽  
...  

ABSTRACT We use dust masses (Mdust) derived from far-infrared data and molecular gas masses (Mmol) based on CO luminosity to calibrate proxies based on a combination of the galaxy Balmer decrement, disc inclination, and gas metallicity. We use such proxies to estimate Mdust and Mmol in the local SDSS sample of star-forming galaxies (SFGs). We study the distribution of Mdust and Mmol along and across the main sequence (MS) of SFGs. We find that Mdust and Mmol increase rapidly along the MS with increasing stellar mass (M*), and more marginally across the MS with increasing SFR (or distance from the relation). The dependence on M* is sub-linear for both Mdust and Mmol. Thus, the fraction of dust (fdust) and molecular gas mass (fmol) decreases monotonically towards large M*. The star formation efficiency (SFE, inverse of the molecular gas depletion time) depends strongly on the distance from the MS and it is constant along the MS. As nearly all galaxies in the sample are central galaxies, we estimate the dependence of fdust and fgas on the host halo mass and find a tight anticorrelation. As the region where the MS is bending is numerically dominated by massive haloes, we conclude that the bending of the MS is due to a lower availability of molecular gas mass in massive haloes rather than a lower efficiency in forming stars.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Robert Feldmann

AbstractObservations of the interstellar medium are key to deciphering the physical processes regulating star formation in galaxies. However, observational uncertainties and detection limits can bias the interpretation unless carefully modeled. Here I re-analyze star formation rates and gas masses of a representative sample of nearby galaxies with the help of multi-dimensional Bayesian modeling. Typical star forming galaxies are found to lie in a ‘star forming plane’ largely independent of their stellar mass. Their star formation activity is tightly correlated with the molecular and total gas content, while variations of the molecular-gas-to-star conversion efficiency are shown to be significantly smaller than previously reported. These data-driven findings suggest that physical processes that modify the overall galactic gas content, such as gas accretion and outflows, regulate the star formation activity in typical nearby galaxies, while a change in efficiency triggered by, e.g., galaxy mergers or gas instabilities, may boost the activity of starbursts.


2019 ◽  
Vol 628 ◽  
pp. A24 ◽  
Author(s):  
K. George ◽  
S. Subramanian ◽  
K. T. Paul

The suppression of star formation in the inner kiloparsec regions of barred disk galaxies due to the action of bars is known as bar quenching. We investigate here the significance of bar quenching in the global quenching of star formation in the barred galaxies and their transformation to passive galaxies in the local Universe. We do this by measuring the offset of quenched barred galaxies from star-forming main sequence galaxies in the star formation rate-stellar mass plane and comparing it with the length of the bar, which is considered as a proxy of bar quenching. We constructed the star formation rate-stellar mass plane of 2885 local Universe face-on strong barred disk galaxies (z <  0.06) identified by Galaxy Zoo. The barred disk galaxies studied here fall on the star formation main sequence relation with a significant scatter for galaxies above stellar mass 1010.2M⊙. We found that 34.97% galaxies are within the intrinsic scatter (0.3 dex) of the main sequence relation, with a starburst population of 10.78% (above the 0.3 dex) and a quenched population of 54.25% (below the −0.3 dex) of the total barred disk galaxies in our sample. Significant neutral hydrogen (MHI > 109M⊙ with log MHI/M⋆ ∼ −1.0 to −0.5) is detected in the quenched barred galaxies with a similar gas content to that of the star-forming barred galaxies. We found that the offset of the quenched barred galaxies from the main sequence relation is not dependent on the length of the stellar bar. This implies that the bar quenching may not contribute significantly to the global quenching of star formation in barred galaxies. However, this observed result could also be due to other factors such as the dissolution of bars over time after star formation quenching, the effect of other quenching processes acting simultaneously, and/or the effects of environment.


2019 ◽  
Vol 15 (S352) ◽  
pp. 317-317
Author(s):  
Deanne Fisher

AbstractOver 2/3 of all star formation in the Universe occurs in gas-rich, super-high pressure clumpy galaxies in the epoch of redshift z ∼ 1 – 3. However, because these galaxies are so distant we are limited in the information available to study the properties of star formation and gas in these systems. I will present results using a sample of extremely rare, nearby galaxies (called DYNAMO) that are very well matched in gas fraction (fgas ∼ 20 – 80%), kinematics (rotating disks with velocity dispersions ranging 20 – 100 km/s), structure (exponential disks) and morphology (clumpy star formation) to high-z main-sequence galaxies. We therefore use DYNAMO galaxies as laboratories to study the processes inside galaxies in the dominate mode of star formation in the Universe. In this talk I will report on results from our programs with HST, ALMA, Keck, and NOEMA for DYNAMO galaxies that are aimed at testing models of star formation. We have discovered of an inverse relationship between gas velocity dispersion and molecular gas depletion time. This correlation is directly predicted by theories of feedback-regulated star formation; conversely, predictions of models in which turbulence is driven by gravity only are not consistent with our data. I will also show that feedback-regulated star formation can explain the redshift evolution of galaxy star formation efficiency. I will also present results from a recently acquired map of CO(2-1) in a clumpy galaxy with resolution less than 200 pc. With maps such as these we can begin to study these super giant star forming clumps at scales that are more comparable to local surveys. I will show results for the star formation efficiency of clumps, the boundedness of clumps of molecular gas, and discuss links between star formation efficiency and formation of clumps of stellar mass. The details of clumpy systems are a direct constraint of the results of simulations, especially on the nature of feedback in the high density environments of star formation that dominate the early Universe.


2021 ◽  
Vol 504 (2) ◽  
pp. 1989-1998
Author(s):  
Adam B Watts ◽  
Barbara Catinella ◽  
Luca Cortese ◽  
Chris Power ◽  
Sara L Ellison

ABSTRACT Observations have revealed that disturbances in the cold neutral atomic hydrogen (H i) in galaxies are ubiquitous, but the reasons for these disturbances remain unclear. While some studies suggest that asymmetries in integrated H i spectra (global H i asymmetry) are higher in H i-rich systems, others claim that they are preferentially found in H i-poor galaxies. In this work, we utilize the Arecibo Legacy Fast ALFA (ALFALFA) and extended GALEX Arecibo SDSS Survey (xGASS) surveys, plus a sample of post-merger galaxies, to clarify the link between global H i asymmetry and the gas properties of galaxies. Focusing on star-forming galaxies in ALFALFA, we find that elevated global H i asymmetry is not associated with a change in the H i content of a galaxy, and that only the galaxies with the highest global H i asymmetry show a small increase in specific star formation rate (sSFR). However, we show that the lack of a trend with H i content is because ALFALFA misses the ‘gas-poor’ tail of the star-forming main-sequence. Using xGASS to obtain a sample of star-forming galaxies that is representative in both sSFR and H i content, we find that global H i asymmetric galaxies are typically more gas-poor than symmetric ones at fixed stellar mass, with no change in sSFR. Our results highlight the complexity of the connection between galaxy properties and global H i asymmetry. This is further confirmed by the fact that even post-merger galaxies show both symmetric and asymmetric H i spectra, demonstrating that merger activity does not always lead to an asymmetric global H i spectrum.


2014 ◽  
Vol 10 (S309) ◽  
pp. 285-286
Author(s):  
Miroslava Dessauges-Zavadsky ◽  
Michel Zamojski ◽  
Daniel Schaerer ◽  
Françoise Combes ◽  
Eiichi Egami ◽  
...  

AbstractTo extend the molecular gas measurements to typical L* star-forming galaxies (SFGs) at z ∼ 1.5 − 3, we have observed CO emission for five strongly-lensed galaxies selected from the Herschel Lensing Survey. The combined sample of our L* SFGs with CO-detected SFGs at z >1 from the literature shows a large spread in star formation efficiency (SFE). We find that this spread in SFE is due to variations of several physical parameters, primarily the specific star formation rate, but also stellar mass and redshift. An increase of the molecular gas fraction (fgas) is observed from z ∼ 0.2 to z ∼ 1.2, followed by a quasi non-evolution toward higher redshifts, as found in earlier studies. We provide the first measure of fgas of z >1 SFGs at the low-stellar mass end between 109.4 < M∗/M⊙ < 109.9, which shows a clear fgas upturn.


2012 ◽  
Vol 8 (S295) ◽  
pp. 64-73 ◽  
Author(s):  
E. Daddi ◽  
M. T. Sargent ◽  
M. Béthermin ◽  
G. Magdis

AbstractRecent observations have revealed the existence of a ‘main sequence’ of star-forming galaxies out to high redshift. While the majority of star-forming galaxies are observed to be close to this relation between star formation rate (SFR) and stellar mass, a smaller subset of the population – so-called ‘starbursts’ – displays specific star-formation rates and star-formation efficiencies that exceed those of normal (main-sequence) galaxies by up to an order of magnitude. A large degree of homogeneity and similarity has been observed for the properties of the population of normal galaxies across a broad redshift range, including a narrow correlation between their CO luminosity (hence gas content) and IR luminosity and an almost invariable IR SED getting warmer with redshift, while starburst galaxies display systematically different properties. This can be used to devise a simple description of the evolution of the star-forming galaxy population since z ~ 2 and, with a higher degree of uncertainty, even further back in time, in a scheme that we dub two star formation mode framework (2-SFM). We show how this can successfully reproduce the shape of the IR luminosity function of galaxies as a function of redshifts, and the IR number counts. Furthermore, we can link the cosmic evolution of the sSFR of main-sequence galaxies to the evolution of the molecular fuel reservoir and to derive estimates of the molecular gas mass functions of star-forming galaxies that are based on their empirically measured gas properties rather than simulations or semi-analytical modelling. We also infer the evolution of the cosmic abundance of molecular gas and briefly discuss its expected observational signature by molecular line emission, the CO luminosity function.


2020 ◽  
Vol 493 (1) ◽  
pp. L39-L43 ◽  
Author(s):  
Sara L Ellison ◽  
Mallory D Thorp ◽  
Lihwai Lin ◽  
Hsi-An Pan ◽  
Asa F L Bluck ◽  
...  

ABSTRACT Using a sample of 11 478 spaxels in 34 galaxies with molecular gas, star formation, and stellar maps taken from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the parameters that correlate with variations in star formation rates on kpc scales. We use a combination of correlation statistics and an artificial neural network to quantify the parameters that drive both the absolute star formation rate surface density (ΣSFR), as well as its scatter around the resolved star-forming main sequence (ΔΣSFR). We find that ΣSFR is primarily regulated by molecular gas surface density ($\Sigma _{\rm H_2}$) with a secondary dependence on stellar mass surface density (Σ⋆), as expected from an ‘extended Kennicutt–Schmidt relation’. However, ΔΣSFR is driven primarily by changes in star formation efficiency (SFE), with variations in gas fraction playing a secondary role. Taken together, our results demonstrate that whilst the absolute rate of star formation is primarily set by the amount of molecular gas, the variation of star formation rate above and below the resolved star-forming main sequence (on kpc scales) is primarily due to changes in SFE.


Sign in / Sign up

Export Citation Format

Share Document