scholarly journals RNA binding strategies of ribosomal proteins

1999 ◽  
Vol 27 (2) ◽  
pp. 381-388 ◽  
Author(s):  
D. E. Draper ◽  
L. P. Reynaldo
2020 ◽  
Vol 21 (3) ◽  
pp. 1151 ◽  
Author(s):  
Shannon E. Dougherty ◽  
Austin O. Maduka ◽  
Toshifumi Inada ◽  
Gustavo M. Silva

The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.


2020 ◽  
Vol 21 (4) ◽  
pp. 1254 ◽  
Author(s):  
Tomas Masek ◽  
Edgar del Llano ◽  
Lenka Gahurova ◽  
Michal Kubelka ◽  
Andrej Susor ◽  
...  

Meiotic maturation of oocyte relies on pre-synthesised maternal mRNA, the translation of which is highly coordinated in space and time. Here, we provide a detailed polysome profiling protocol that demonstrates a combination of the sucrose gradient ultracentrifugation in small SW55Ti tubes with the qRT-PCR-based quantification of 18S and 28S rRNAs in fractionated polysome profile. This newly optimised method, named Scarce Sample Polysome Profiling (SSP-profiling), is suitable for both scarce and conventional sample sizes and is compatible with downstream RNA-seq to identify polysome associated transcripts. Utilising SSP-profiling we have assayed the translatome of mouse oocytes at the onset of nuclear envelope breakdown (NEBD)—a developmental point, the study of which is important for furthering our understanding of the molecular mechanisms leading to oocyte aneuploidy. Our analyses identified 1847 transcripts with moderate to strong polysome occupancy, including abundantly represented mRNAs encoding mitochondrial and ribosomal proteins, proteasomal components, glycolytic and amino acids synthetic enzymes, proteins involved in cytoskeleton organization plus RNA-binding and translation initiation factors. In addition to transcripts encoding known players of meiotic progression, we also identified several mRNAs encoding proteins of unknown function. Polysome profiles generated using SSP-profiling were more than comparable to those developed using existing conventional approaches, being demonstrably superior in their resolution, reproducibility, versatility, speed of derivation and downstream protocol applicability.


2019 ◽  
Vol 11 (10) ◽  
pp. 816-828 ◽  
Author(s):  
Lichao Liu ◽  
J Yuyang Lu ◽  
Fajin Li ◽  
Xudong Xing ◽  
Tong Li ◽  
...  

Abstract The metabolic enzyme isocitrate dehydrogenase 1 (IDH1) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Its mutation often leads to aberrant gene expression in cancer. IDH1 was reported to bind thousands of RNA transcripts in a sequence-dependent manner; yet, the functional significance of this RNA-binding activity remains elusive. Here, we report that IDH1 promotes mRNA translation via direct associations with polysome mRNA and translation machinery. Comprehensive proteomic analysis in embryonic stem cells (ESCs) revealed striking enrichment of ribosomal proteins and translation regulators in IDH1-bound protein interactomes. We performed ribosomal profiling and analyzed mRNA transcripts that are associated with actively translating polysomes. Interestingly, knockout of IDH1 in ESCs led to significant downregulation of polysome-bound mRNA in IDH1 targets and subtle upregulation of ribosome densities at the start codon, indicating inefficient translation initiation upon loss of IDH1. Tethering IDH1 to a luciferase mRNA via the MS2-MBP system promotes luciferase translation, independently of the catalytic activity of IDH1. Intriguingly, IDH1 fails to enhance luciferase translation driven by an internal ribosome entry site. Together, these results reveal an unforeseen role of IDH1 in fine-tuning cap-dependent translation via the initiation step.


1999 ◽  
Vol 10 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Serafı́n Piñol-Roma

rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin—a major nucleolar RNA-binding protein—contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.


1999 ◽  
Vol 19 (8) ◽  
pp. 5441-5452 ◽  
Author(s):  
Sarah J. Lee ◽  
Susan J. Baserga

ABSTRACT The function of the U3 small nucleolar ribonucleoprotein (snoRNP) is central to the events surrounding pre-rRNA processing, as evidenced by the severe defects in cleavage of pre-18S rRNA precursors observed upon depletion of the U3 RNA and its unique protein components. Although the precise function of each component remains unclear, since U3 snoRNA levels remain unchanged upon genetic depletion of these proteins, it is likely that the proteins themselves have significant roles in the cleavage reactions. Here we report the identification of two previously undescribed protein components of the U3 snoRNP, representing the first snoRNP components identified by using the two-hybrid methodology. By screening for proteins that physically associate with the U3 snoRNP-specific protein, Mpp10p, we have identified Imp3p (22 kDa) and Imp4p (34 kDa) (named for interacting with Mpp10p). The genes encoding both proteins are essential in yeast. Genetic depletion reveals that both proteins are critical for U3 snoRNP function in pre-18S rRNA processing at the A0, A1, and A2 sites in the pre-rRNA. Both Imp proteins associate with Mpp10p in vivo, and both are complexed only with the U3 snoRNA. Conservation of RNA binding domains between Imp3p and the S4 family of ribosomal proteins suggests that it might associate with RNA directly. However, as with other U3 snoRNP-specific proteins, neither Imp3p nor Imp4p is required for maintenance of U3 snoRNA integrity. Imp3p and Imp4p are therefore novel protein components specific to the U3 snoRNP with critical roles in pre-rRNA cleavage events.


1976 ◽  
Vol 54 (5) ◽  
pp. 470-476
Author(s):  
F. K. Chu ◽  
P. Y. Maeba

Reconstituted 37S and 48S ribonucleoprotein particles were constructed by incubating Escherichia coli ribosomal RNA with total 50S ribosomal proteins by a sequential incubation method. By comparing the protein compositions of the two types of particles, the proteins that bind to 37S complexes to form 48S particles have been determined. Although only 48S particles could associate with 30S subunits, isolated 37S reconstituted particles could do so if incubated with exogenous 50S proteins. The proteins that bind under these conditions and confer upon particles the ability to associate are L2, L11, L15, L18 and L25. The involvement of these proteins in 5S RNA binding is discussed.


1995 ◽  
Vol 73 (11-12) ◽  
pp. 979-986 ◽  
Author(s):  
V. Ramakrishnan ◽  
Sue Ellen Gerchman ◽  
Jadwiga H. Kycia ◽  
Christopher Davies ◽  
Barbara L. Golden ◽  
...  

After along hiatus, the pace of determination of the structures of ribosomal proteins has accelerated dramatically. We discuss here the structures of five ribosomal proteins from Bacillus stearothermophilus: S5, S17, L6, L9, and L14. These structures represent several new motifs. Each of these structures has revealed new insights, and we have developed criteria for recognizing RNA-binding regions of each protein and correlating the structures with such properties as antibiotic resistance. The information here should also prove invaluable in an eventual high-resolution picture of the intact ribosome.Key words: ribosome, ribosomal proteins, ribosomal RNA, X-ray crystallography, NMR.


2004 ◽  
Vol 24 (24) ◽  
pp. 10894-10904 ◽  
Author(s):  
Robert V. Intine ◽  
Miroslav Dundr ◽  
Alex Vassilev ◽  
Elena Schwartz ◽  
Yingmin Zhao ◽  
...  

ABSTRACT La is a RNA-binding protein implicated in multiple pathways related to the production of tRNAs, ribosomal proteins, and other components of the translational machinery (D. J. Kenan and J. D. Keene, Nat. Struct. Mol. Biol. 11 :303-305, 2004). While most La is phosphorylated and resides in the nucleoplasm, a fraction is in the nucleolus, the site of ribosome production, although the determinants of this localization are incompletely known. In addition to its conserved N-terminal domain, human La harbors a C-terminal domain that contains an atypical RNA recognition motif and a short basic motif (SBM) adjacent to phosphoserine-366. We report that nonphosphorylated La (npLa) is concentrated in nucleolar sites that correspond to the dense fibrillar component that harbors nascent pol I transcripts as well as fibrillarin and nucleolin, which function in early phases of rRNA maturation. Affinity purification and native immunoprecipitation of La and fluorescence resonance energy transfer in the nucleolus reveal close association with nucleolin. Moreover, La lacking the SBM does not localize to nucleoli. Lastly, La exhibits SBM-dependent, phosphorylation-sensitive interaction with nucleolin in a yeast two-hybrid assay. The data suggest that interaction with nucleolin is, at least in part, responsible for nucleolar accumulation of La and that npLa may be involved in ribosome biogenesis.


Sign in / Sign up

Export Citation Format

Share Document