scholarly journals RNase AM, a 5′ to 3′ exonuclease, matures the 5′ end of all three ribosomal RNAs in E. coli

2020 ◽  
Vol 48 (10) ◽  
pp. 5616-5623 ◽  
Author(s):  
Chaitanya Jain

Abstract Bacterial ribosomal RNAs (rRNAs) are transcribed as precursors and require processing by Ribonucleases (RNases) to generate mature and functional rRNAs. Although the initial steps of rRNA processing in Escherichia coli (E. coli) were described several decades ago, the enzymes responsible for the final steps of 5S and 23S rRNA 5′-end maturation have remained unknown. Here, I show that RNase AM, a recently identified 5′ to 3′ exonuclease, performs the last step of 5S rRNA 5′-end maturation. RNase AM was also found to generate the mature 5′ end of 23S rRNA, subsequent to a newly identified prior processing step. Additionally, RNase AM was found to mature the 5′ end of 16S rRNA, a reaction previously attributed to RNase G. These findings indicate a major role for RNase AM in cellular RNA metabolism and establish a biological role for the first 5′ to 3′ RNA exonuclease identified in E. coli.

1969 ◽  
Vol 115 (3) ◽  
pp. 395-403 ◽  
Author(s):  
R. J. Avery ◽  
J. E. M. Midgley ◽  
G. H. Pigott

From analyses of the hybridization of Escherichia coli rRNA (ribosomal RNA) to homologous denatured DNA, the following conclusions were drawn. (1) When a fixed amount of DNA was hybridized with increasing amounts of RNA, only 0·35±0·02% of E. coli DNA was capable of binding (16s+23s) rRNA. Although preparations of 16s and 23s rRNA were virtually free from cross-contamination, the hybridization curves for purified 16s or 23s rRNA were almost identical with that of the parent specimen containing 1 weight unit of 16s rRNA mixed with 2 weight units of 23s rRNA. The 16s and 23s rRNA also competed effectively for the same specific DNA sites. It appears that these RNA species each possess all hybridizing species typical of the parent (16s+23s) rRNA specimen, though probably in different relative amounts. (2) By using hybridization-efficiency analysis of DNA–RNA hybridization curves (Avery & Midgley, 1969) it was found that (a) 0·45% of the DNA would hybridize total rRNA and (b) when so little RNA was added to unit weight of DNA that the DNA sites were not saturated, only 70–75% of the input RNA would form hybrids. The reasons for the discrepancy between the results obtained by the two alternative analytical approaches were discussed. (3) For either 16s or 23s rRNA, hybridization analysis indicated that two principal weight fractions of rRNA may exist, hybridizing to two distinct groups of DNA sites. However, these groups seem to be incompletely divided between the 16s and 23s fractions. Analysis suggested that (a) 85% of the 16s rRNA was hybridized to about half the DNA that specifically binds rRNA (0·23% of the total DNA). (b) 70% of the 23s rRNA hybridized to a further 0·23% of the DNA and (c) the minor fraction (15%) of 16s rRNA may be competitive with the major fraction (70%) of 23s rRNA. Conversely, the minor fraction (30%) of the 23s rRNA may compete with the major fraction (85%) of 16s rRNA. Models were proposed to explain the apparent lack of segregation of distinct RNA species in the two subfractions of rRNA. (4) If protein synthesis and ribosome maturation were inhibited in cells of an RCrel mutant, E. coli W 1665, by depriving them of an amino acid (methionine) essential for growth, the inhibition had no discernible effect on the relative rates of synthesis of rRNA species. The rRNA that accumulates in RCrel strains of E. coli after amino acid deprivation is apparently identical in its content of RNA species with that of the pre-existing mature RNA in the ribosomes. On the other hand, the messenger RNA is stabilized, and accumulates as about 15% of the RNA formed after withdrawal of the amino acid.


2018 ◽  
Vol 28 (4) ◽  
pp. 179-182
Author(s):  
Tatsuaki  Kurata ◽  
Shinobu Nakanishi ◽  
Masayuki Hashimoto ◽  
Masato Taoka ◽  
Toshiaki Isobe ◽  
...  

<i>Escherichia coli</i> 16S, 23S, and 5S ribosomal RNAs (rRNAs) are transcribed as a single primary transcript, which is subsequently processed into mature rRNAs by several RNases. Three RNases (RNase III, RNase E, and RNase G) were reported to function in processing the 5′-leader of precursor 16S rRNA (pre-16S rRNA). Previously, we showed that a novel essential YqgF is involved in that processing. Here we investigated the ribosome subunits of the <i>yqgF</i><sup>ts</sup> mutant by LC-MS/MS. The mutant ribosome had decreased copy numbers of ribosome protein S1, suggesting that the <i>yqgF</i> gene enables incorporation of ribosomal protein S1 into ribosome by processing of the 5′-end of pre-16S rRNA. The ribosome protein S1 is essential for translation in <i>E. coli</i>; therefore, our results suggest that YqgF converts the inactive form of newly synthesized ribosome into the active form at the final step of ribosome assembly.


2005 ◽  
Vol 49 (1) ◽  
pp. 281-288 ◽  
Author(s):  
Liqun Xiong ◽  
Yakov Korkhin ◽  
Alexander S. Mankin

ABSTRACT Ketolides represent the latest group of macrolide antibiotics. Tight binding of ketolides to the ribosome appears to correlate with the presence of an extended alkyl-aryl side chain. Recently developed 6,11-bridged bicyclic ketolides extend the spectrum of platforms used to generate new potent macrolides with extended alkyl-aryl side chains. The purpose of the present study was to characterize the site of binding and the action of bridged macrolides in the ribosomes of Escherichia coli. All the bridged macrolides investigated efficiently protected A2058 and A2059 in domain V of 23S rRNA from modification by dimethyl sulfate and U2609 from modification by carbodiimide. In addition, bridged macrolides that carry extended alkyl-aryl side chains protruding from the 6,11 bridge protected A752 in helix 35 of domain II of 23S rRNA from modification by dimethyl sulfate. Bridged macrolides efficiently displaced erythromycin from the ribosome in a competition binding assay. The A2058G mutation in 23S rRNA conferred resistance to the bridged macrolides. The U2609C mutation, which renders E. coli resistant to the previously studied ketolides telithromycin and cethromycin, barely affected cell susceptibility to the bridged macrolides used in this study. The results of the biochemical and genetic studies indicate that in the E. coli ribosome, bridged macrolides bind in the nascent peptide exit tunnel at the site previously described for other macrolide antibiotics. The presence of the side chain promotes the formation of specific interactions with the helix 35 of 23S rRNA.


2006 ◽  
Vol 396 (3) ◽  
pp. 565-571 ◽  
Author(s):  
Takaomi Nomura ◽  
Kohji Nakano ◽  
Yasushi Maki ◽  
Takao Naganuma ◽  
Takashi Nakashima ◽  
...  

We cloned the genes encoding the ribosomal proteins Ph (Pyrococcus horikoshii)-P0, Ph-L12 and Ph-L11, which constitute the GTPase-associated centre of the archaebacterium Pyrococcus horikoshii. These proteins are homologues of the eukaryotic P0, P1/P2 and eL12 proteins, and correspond to Escherichia coli L10, L7/L12 and L11 proteins respectively. The proteins and the truncation mutants of Ph-P0 were overexpressed in E. coli cells and used for in vitro assembly on to the conserved domain around position 1070 of 23S rRNA (E. coli numbering). Ph-L12 tightly associated as a homodimer and bound to the C-terminal half of Ph-P0. The Ph-P0·Ph-L12 complex and Ph-L11 bound to the 1070 rRNA fragments from the three biological kingdoms in the same manner as the equivalent proteins of eukaryotic and eubacterial ribosomes. The Ph-P0·Ph-L12 complex and Ph-L11 could replace L10·L7/L12 and L11 respectively, on the E. coli 50S subunit in vitro. The resultant hybrid ribosome was accessible for eukaryotic, as well as archaebacterial elongation factors, but not for prokaryotic elongation factors. The GTPase and polyphenylalanine-synthetic activity that is dependent on eukaryotic elongation factors was comparable with that of the hybrid ribosomes carrying the eukaryotic ribosomal proteins. The results suggest that the archaebacterial proteins, including the Ph-L12 homodimer, are functionally accessible to eukaryotic translation factors.


2017 ◽  
Vol 199 (8) ◽  
Author(s):  
P. Himabindu ◽  
K. Anupama

ABSTRACT The endoribonuclease RNase E participates in mRNA degradation, rRNA processing, and tRNA maturation in Escherichia coli, but the precise reasons for its essentiality are unclear and much debated. The enzyme is most active on RNA substrates with a 5′-terminal monophosphate, which is sensed by a domain in the enzyme that includes residue R169; E. coli also possesses a 5′-pyrophosphohydrolase, RppH, that catalyzes conversion of 5′-terminal triphosphate to 5′-terminal monophosphate on RNAs. Although the C-terminal half (CTH), beyond residue approximately 500, of RNase E is dispensable for viability, deletion of the CTH is lethal when combined with an R169Q mutation or with deletion of rppH. In this work, we show that both these lethalities can be rescued in derivatives in which four or five of the seven rrn operons in the genome have been deleted. We hypothesize that the reduced stable RNA levels under these conditions minimize the need of RNase E to process them, thereby allowing for its diversion for mRNA degradation. In support of this hypothesis, we have found that other conditions that are known to reduce stable RNA levels also suppress one or both lethalities: (i) alterations in relA and spoT, which are expected to lead to increased basal ppGpp levels; (ii) stringent rpoB mutations, which mimic high intracellular ppGpp levels; and (iii) overexpression of DksA. Lethality suppression by these perturbations was RNase R dependent. Our work therefore suggests that its actions on the various substrates (mRNA, rRNA, and tRNA) jointly contribute to the essentiality of RNase E in E. coli. IMPORTANCE The endoribonuclease RNase E is essential for viability in many Gram-negative bacteria, including Escherichia coli. Different explanations have been offered for its essentiality, including its roles in global mRNA degradation or in the processing of several tRNA and rRNA species. Our work suggests that, rather than its role in the processing of any one particular substrate, its distributed functions on all the different substrates (mRNA, rRNA, and tRNA) are responsible for the essentiality of RNase E in E. coli.


2019 ◽  
Vol 48 (1) ◽  
pp. 332-348 ◽  
Author(s):  
Vignesh M P Babu ◽  
Siva Sankari ◽  
James A Budnick ◽  
Clayton C Caswell ◽  
Graham C Walker

Abstract Single-strand specific endoribonuclease YbeY has been shown to play an important role in the processing of the 3′ end of the 16S rRNA in Escherichia coli. Lack of YbeY results in the accumulation of the 17S rRNA precursor. In contrast to a previous report, we show that Sinorhizobium meliloti YbeY exhibits endoribonuclease activity on single-stranded RNA substrate but not on the double-stranded substrate. This study also identifies the previously unknown metal ion involved in YbeY function to be Zn2+ and shows that the activity of YbeY is enhanced when the occupancy of zinc is increased. We have identified a pre-16S rRNA precursor that accumulates in the S. meliloti ΔybeY strain. We also show that ΔybeY mutant of Brucella abortus, a mammalian pathogen, also accumulates a similar pre-16S rRNA. The pre-16S species is longer in alpha-proteobacteria than in gamma-proteobacteria. We demonstrate that the YbeY from E. coli and S. meliloti can reciprocally complement the rRNA processing defect in a ΔybeY mutant of the other organism. These results establish YbeY as a zinc-dependent single-strand specific endoribonuclease that functions in 16S rRNA processing in both alpha- and gamma-proteobacteria.


1973 ◽  
Vol 133 (4) ◽  
pp. 739-747 ◽  
Author(s):  
A. Robinson ◽  
J. Sykes

1. The behaviour of the large ribosomal subunit from Rhodopseudomonas spheroides (45S) has been compared with the 50S ribosome from Escherichia coli M.R.E. 600 (and E. coli M.R.E. 162) during unfolding by removal of Mg2+ and detachment of ribosomal proteins by high univalent cation concentrations. The extent to which these processes are reversible with these ribosomes has also been examined. 2. The R. spheroides 45S ribosome unfolds relatively slowly but then gives rise directly to two ribonucleoprotein particles (16.6S and 13.7S); the former contains the intact primary structure of the 16.25S rRNA species and the latter the 15.00S rRNA species of the original ribosome. No detectable protein loss occurs during unfolding. The E. coli ribosome unfolds via a series of discrete intermediates to a single, unfolded ribonucleoprotein unit (19.1S) containing the 23S rRNA and all the protein of the original ribosome. 3. The two unfolded R. spheroides ribonucleoproteins did not recombine when the original conditions were restored but each simply assumed a more compact configuration. Similar treatments reversed the unfolding of the E. coli 50S ribosomes; replacement of Mg2+ caused the refolding of the initial products of unfolding and in the presence of Ni2+ the completely unfolded species (19.1S) again sedimented at the same rate as the original ribosomes (44S). 4. Ribosomal proteins (25%) were dissociated from R. spheroides 45S ribosomes by dialysis against a solution with a Na+/Mg2+ ratio of 250:1. During this process two core particles were formed (21.2S and 14.2S) and the primary structures of the two original rRNA species were conserved. This dissociation was not reversed. With E. coli 50S approximately 15% of the original ribosomal protein was dissociated, a single 37.6S core particle was formed, the 23S rRNA remained intact and the ribosomal proteins would reassociate with the core particle to give a 50S ribosome. 5. The ribonuclease activities in R. spheroides 45S and E. coli M.R.E. 600 and E. coli M.R.E. 162 50S ribosomes are compared. 6. The observations concerning unfolding and dissociation are consistent with previous reports showing the unusual rRNA complement of the mature R. spheroides 45S ribosome and show the dependence of these events upon the rRNA and the importance of protein–protein interactions in the structure of the R. spheroides ribosome.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Minho Lee ◽  
Minju Joo ◽  
Minji Sim ◽  
Se-Hoon Sim ◽  
Hyun-Lee Kim ◽  
...  

AbstractRapid modulation of RNA function by endoribonucleases during physiological responses to environmental changes is known to be an effective bacterial biochemical adaptation. We report a molecular mechanism underlying the regulation of enolase (eno) expression by two endoribonucleases, RNase G and RNase III, the expression levels of which are modulated by oxygen availability in Escherichia coli. Analyses of transcriptional eno-cat fusion constructs strongly suggested the existence of cis-acting elements in the eno 5′ untranslated region that respond to RNase III and RNase G cellular concentrations. Primer extension and S1 nuclease mapping analyses of eno mRNA in vivo identified three eno mRNA transcripts that are generated in a manner dependent on RNase III expression, one of which was found to accumulate in rng-deleted cells. Moreover, our data suggested that RNase III-mediated cleavage of primary eno mRNA transcripts enhanced Eno protein production, a process that involved putative cis-antisense RNA. We found that decreased RNase G protein abundance coincided with enhanced RNase III expression in E. coli grown anaerobically, leading to enhanced eno expression. Thereby, this posttranscriptional up-regulation of eno expression helps E. coli cells adjust their physiological reactions to oxygen-deficient metabolic modes. Our results revealed a molecular network of coordinated endoribonuclease activity that post-transcriptionally modulates the expression of Eno, a key enzyme in glycolysis.


2007 ◽  
Vol 189 (23) ◽  
pp. 8510-8518 ◽  
Author(s):  
Koichi Inoue ◽  
Soumit Basu ◽  
Masayori Inouye

ABSTRACT A 16S rRNA methyltransferase, KsgA, identified originally in Escherichia coli is highly conserved in all living cells, from bacteria to humans. KsgA orthologs in eukaryotes possess functions in addition to their rRNA methyltransferase activity. E. coli Era is an essential GTP-binding protein. We recently observed that KsgA functions as a multicopy suppressor for the cold-sensitive cell growth of an era mutant [Era(E200K)] strain (Q. Lu and M. Inouye, J. Bacteriol. 180:5243-5246, 1998). Here we observed that although KsgA(E43A), KsgA(G47A), and KsgA(E66A) mutations located in the S-adenosylmethionine-binding motifs severely reduced its methyltransferase activity, these mutations retained the ability to suppress the growth defect of the Era(E200K) strain at a low temperature. On the other hand, a KsgA(R248A) mutation at the C-terminal domain that does not affect the methyltransferase activity failed to suppress the growth defect. Surprisingly, E. coli cells overexpressing wild-type KsgA, but not KsgA(R248A), were found to be highly sensitive to acetate even at neutral pH. Such growth inhibition also was observed in the presence of other weak organic acids, such as propionate and benzoate. These chemicals are known to be highly toxic at acidic pH by lowering the intracellular pH. We found that KsgA-induced cells had increased sensitivity to extreme acid conditions (pH 3.0) compared to that of noninduced cells. These results suggest that E. coli KsgA, in addition to its methyltransferase activity, has another unidentified function that plays a role in the suppression of the cold-sensitive phenotype of the Era(E200K) strain and that the additional function may be involved in the acid shock response. We discuss a possible mechanism of the KsgA-induced acid-sensitive phenotype.


2005 ◽  
Vol 187 (11) ◽  
pp. 3708-3712 ◽  
Author(s):  
Lisa Nonaka ◽  
Sean R. Connell ◽  
Diane E. Taylor

ABSTRACT Tetracycline resistance in clinical isolates of Helicobacter pylori has been associated with nucleotide substitutions at positions 965 to 967 in the 16S rRNA. We constructed mutants which had different sequences at 965 to 967 in the 16S rRNA gene present on a multicopy plasmid in Escherichia coli strain TA527, in which all seven rrn genes were deleted. The MICs for tetracycline of all mutants having single, double, or triple substitutions at the 965 to 967 region that were previously found in highly resistant H. pylori isolates were higher than that of the mutant exhibiting the wild-type sequence of tetracycline-susceptible H. pylori. The MIC of the mutant with the 965TTC967 triple substitution was 32 times higher than that of the E. coli mutant with the 965AGA967 substitution present in wild-type H. pylori. The ribosomes extracted from the tetracycline-resistant E. coli 965TTC967 variant bound less tetracycline than E. coli with the wild-type H. pylori sequence at this region. The concentration of tetracycline bound to the ribosome was 40% that of the wild type. The results of this study suggest that tetracycline binding to the primary binding site (Tet-1) of the ribosome at positions 965 to 967 is influenced by its sequence patterns, which form the primary binding site for tetracycline.


Sign in / Sign up

Export Citation Format

Share Document