scholarly journals ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures

2020 ◽  
Vol 48 (21) ◽  
pp. e123-e123
Author(s):  
Tiantian Ye ◽  
Wenxiu Ma

Abstract The recently developed Hi-C technique has been widely applied to map genome-wide chromatin interactions. However, current methods for analyzing diploid Hi-C data cannot fully distinguish between homologous chromosomes. Consequently, the existing diploid Hi-C analyses are based on sparse and inaccurate allele-specific contact matrices, which might lead to incorrect modeling of diploid genome architecture. Here we present ASHIC, a hierarchical Bayesian framework to model allele-specific chromatin organizations in diploid genomes. We developed two models under the Bayesian framework: the Poisson-multinomial (ASHIC-PM) model and the zero-inflated Poisson-multinomial (ASHIC-ZIPM) model. The proposed ASHIC methods impute allele-specific contact maps from diploid Hi-C data and simultaneously infer allelic 3D structures. Through simulation studies, we demonstrated that ASHIC methods outperformed existing approaches, especially under low coverage and low SNP density conditions. Additionally, in the analyses of diploid Hi-C datasets in mouse and human, our ASHIC-ZIPM method produced fine-resolution diploid chromatin maps and 3D structures and provided insights into the allelic chromatin organizations and functions. To summarize, our work provides a statistically rigorous framework for investigating fine-scale allele-specific chromatin conformations. The ASHIC software is publicly available at https://github.com/wmalab/ASHIC.

2020 ◽  
Author(s):  
Tiantian Ye ◽  
Wenxiu Ma

AbstractThe recently developed Hi-C technique has been widely applied to map genome-wide chromatin interactions. However, current methods for analyzing diploid Hi-C data cannot fully distinguish between homologous chromosomes. Consequently, the existing diploid Hi-C analyses are based on sparse and inaccurate allele-specific contact matrices, which might lead to inaccurate modeling of diploid genome architecture.Here, we present ASHIC, a hierarchical Bayesian framework to model allele-specific chromatin organizations in diploid genomes. We developed two models under this Bayesian framework: the Poisson-multinomial (ASHIC-PM) model and the zero-inflated Poisson-multinomial (ASHIC-ZIPM) model. The proposed ASHIC methods impute allele-specific contact maps from diploid Hi-C data and simultaneously infer allelic 3D structures. Through simulation studies, we demonstrated that our methods outperformed existing approaches, especially under low coverage and low SNP density conditions. Additionally, we applied ASHIC-ZIPM to a published diploid mouse Hi-C data and studied the active/inactive X chromosomes and the H19/Igf2 imprinting region. In both cases, our method produced fine-resolution diploid chromatin maps and 3D structures, and provided insights into the allelic chromatin organizations and functions. To summarize, our work provides a statistically rigorous framework for investigating fine-scale allele-specific chromatin conformations.The ASHIC software is publicly available at https://github.com/wmalab/ASHIC.


2018 ◽  
Author(s):  
Daniel Capurso ◽  
Jiahui Wang ◽  
Simon Zhongyuan Tian ◽  
Liuyang Cai ◽  
Sandeep Namburi ◽  
...  

AbstractChIA-PET enables the genome-wide discovery of chromatin interactions involving specific protein factors, with base-pair resolution. Interpreting ChIA-PET data depends on having a robust analytic pipeline. Here, we introduce ChIA-PIPE, a fully automated pipeline for ChIA-PET data processing, quality assessment, analysis, and visualization. ChIA-PIPE performs linker filtering, read mapping, peak calling, loop calling, chromatin-contact-domain calling, and can resolve allele-specific peaks and loops. ChIA-PIPE also automates quality-control assessment for each dataset. Furthermore, ChIA-PIPE generates input files for visualizing 2D contact maps with Juicebox and HiGlass, and provides a new dockerized visualization tool for high-resolution, browser-based exploration of peaks and loops. With minimal adjusting, ChIA-PIPE can also be suited for the analysis of other related chromatin-mapping data.


2020 ◽  
Vol 6 (28) ◽  
pp. eaay2078 ◽  
Author(s):  
Byoungkoo Lee ◽  
Jiahui Wang ◽  
Liuyang Cai ◽  
Minji Kim ◽  
Sandeep Namburi ◽  
...  

ChIA-PET (chromatin interaction analysis with paired-end tags) enables genome-wide discovery of chromatin interactions involving specific protein factors, with base pair resolution. Interpretation of ChIA-PET data requires a robust analytic pipeline. Here, we introduce ChIA-PIPE, a fully automated pipeline for ChIA-PET data processing, quality assessment, visualization, and analysis. ChIA-PIPE performs linker filtering, read mapping, peak calling, and loop calling and automates quality control assessment for each dataset. To enable visualization, ChIA-PIPE generates input files for two-dimensional contact map viewing with Juicebox and HiGlass and provides a new dockerized visualization tool for high-resolution, browser-based exploration of peaks and loops. To enable structural interpretation, ChIA-PIPE calls chromatin contact domains, resolves allele-specific peaks and loops, and annotates enhancer-promoter loops. ChIA-PIPE also supports the analysis of other related chromatin-mapping data types.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Vahid Akbari ◽  
Jean-Michel Garant ◽  
Kieran O’Neill ◽  
Pawan Pandoh ◽  
Richard Moore ◽  
...  

AbstractThe ability of nanopore sequencing to simultaneously detect modified nucleotides while producing long reads makes it ideal for detecting and phasing allele-specific methylation. However, there is currently no complete software for detecting SNPs, phasing haplotypes, and mapping methylation to these from nanopore sequence data. Here, we present NanoMethPhase, a software tool to phase 5-methylcytosine from nanopore sequencing. We also present SNVoter, which can post-process nanopore SNV calls to improve accuracy in low coverage regions. Together, these tools can accurately detect allele-specific methylation genome-wide using nanopore sequence data with low coverage of about ten-fold redundancy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xinping Fan ◽  
Guanghao Luo ◽  
Yu S. Huang

Abstract Background Copy number alterations (CNAs), due to their large impact on the genome, have been an important contributing factor to oncogenesis and metastasis. Detecting genomic alterations from the shallow-sequencing data of a low-purity tumor sample remains a challenging task. Results We introduce Accucopy, a method to infer total copy numbers (TCNs) and allele-specific copy numbers (ASCNs) from challenging low-purity and low-coverage tumor samples. Accucopy adopts many robust statistical techniques such as kernel smoothing of coverage differentiation information to discern signals from noise and combines ideas from time-series analysis and the signal-processing field to derive a range of estimates for the period in a histogram of coverage differentiation information. Statistical learning models such as the tiered Gaussian mixture model, the expectation–maximization algorithm, and sparse Bayesian learning were customized and built into the model. Accucopy is implemented in C++ /Rust, packaged in a docker image, and supports non-human samples, more at http://www.yfish.org/software/. Conclusions We describe Accucopy, a method that can predict both TCNs and ASCNs from low-coverage low-purity tumor sequencing data. Through comparative analyses in both simulated and real-sequencing samples, we demonstrate that Accucopy is more accurate than Sclust, ABSOLUTE, and Sequenza.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e24052 ◽  
Author(s):  
Marguerite R. Irvin ◽  
Nathan E. Wineinger ◽  
Treva K. Rice ◽  
Nicholas M. Pajewski ◽  
Edmond K. Kabagambe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document