scholarly journals Double-stranded flanking ends affect the folding kinetics and conformational equilibrium of G-quadruplexes forming sequences within the promoter of KIT oncogene

2021 ◽  
Author(s):  
Guglielmo Vesco ◽  
Marco Lamperti ◽  
Domenico Salerno ◽  
Claudia Adriana Marrano ◽  
Valeria Cassina ◽  
...  

Abstract G-quadruplexes embedded within promoters play a crucial role in regulating the gene expression. KIT is a widely studied oncogene, whose promoter contains three G-quadruplex forming sequences, c-kit1, c-kit2 and c-kit*. For these sequences available studies cover ensemble and single-molecule analyses, although for kit* the latter were limited to a study on a promoter domain comprising all of them. Recently, c-kit2 has been reported to fold according to a multi-step process involving folding intermediates. Here, by exploiting fluorescence resonance energy transfer, both in ensemble and at the single molecule level, we investigated the folding of expressly designed constructs in which, alike in the physiological context, either c-kit2 or c-kit* are flanked by double stranded DNA segments. To assess whether the presence of flanking ends at the borders of the G-quadruplex affects the folding, we studied under the same protocols oligonucleotides corresponding to the minimal G-quadruplex forming sequences. Data suggest that addition of flanking ends results in biasing both the final equilibrium state and the folding kinetics. A previously unconsidered aspect is thereby unravelled, which ought to be taken into account to achieve a deeper insight of the complex relationships underlying the fine tuning of the gene-regulatory properties of these fascinating DNA structures.

2021 ◽  
Author(s):  
Golam Mustafa ◽  
Prabesh Gyawali ◽  
Jacob A. Taylor ◽  
Parastoo Maleki ◽  
Marlon V. Nunez ◽  
...  

We present a collection of single molecule work on the i-motif structure formed by the human telomeric sequence. Even though it was largely ignored in earlier years of its discovery due to its modest stability and requirement for physiologically low pH levels (pH<6.5), the i-motif has been attracting more attention recently as both a physiologically relevant structure and as a potent pH sensor. In this manuscript, we establish single molecule F&oumlrster resonance energy transfer (smFRET) as a tool to study the i-motif over a broad pH and ionic conditions. We demonstrate pH and salt dependence of i-motif formation under steady state conditions and illustrate the kinetics of i-motif folding in real time at the single molecule level. We also show the prominence of intermediate folding states and reversible folding/unfolding transitions. We present an example of using the i-motif as an in-situ pH sensor and use this sensor establish the time scale for the pH drop in a commonly used oxygen scavenging system.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3105 ◽  
Author(s):  
Henning Höfig ◽  
Michele Cerminara ◽  
Ilona Ritter ◽  
Antonie Schöne ◽  
Martina Pohl ◽  
...  

Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.


2015 ◽  
Vol 184 ◽  
pp. 131-142 ◽  
Author(s):  
Lasse L. Hildebrandt ◽  
Søren Preus ◽  
Victoria Birkedal

Förster resonance energy transfer (FRET) microscopy at the single molecule level has the potential to yield information on intra and intermolecular distances within the 2–10 nm range of molecules or molecular complexes that undergo frequent conformation changes. A pre-requirement for obtaining accurate distance information is to determine quantitative instrument independent FRET efficiency values. Here, we applied and evaluated a procedure to determine quantitative FRET efficiencies directly from individual fluorescence time traces of surface immobilized DNA molecules without the need for external calibrants. To probe the robustness of the approach over a wide range of FRET efficiencies we used a set of doubly labelled double stranded DNA samples, where the acceptor position was varied systematically. Interestingly, we found that fluorescence contributions arising from direct acceptor excitation following donor excitation are intrinsically taken into account in these conditions as other correction factors can compensate for inaccurate values of these parameters. We give here guidelines, that can be used through tools within the iSMS software (http://www.isms.au.dk), for determining quantitative FRET and assess uncertainties linked with the procedure. Our results provide insights into the experimental parameters governing quantitative FRET determination, which is essential for obtaining accurate structural information from a wide range of biomolecules.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sichen Pan ◽  
Chen Yang ◽  
Xin Sheng Zhao

Abstract Outer membrane proteins (OMPs) are essential to gram-negative bacteria, and molecular chaperones prevent the OMPs from aggregation in the periplasm during the OMPs biogenesis. Skp is one of the molecular chaperones for this purpose. Here, we combined single-molecule fluorescence resonance energy transfer and fluorescence correlation spectroscopy to study the affinity and stoichiometric ratio of Skp in its binding with OmpC at the single-molecule level. The half concentration of the Skp self-trimerization (C1/2) was measured to be (2.5 ± 0.7) × 102 nM. Under an Skp concentration far below the C1/2, OmpC could recruit Skp monomers to form OmpC·Skp3. The affinity to form the OmpC·Skp3 complex was determined to be (5.5 ± 0.4) × 102 pM with a Hill coefficient of 1.6 ± 0.2. Under the micromolar concentrations of Skp, the formation of OmpC·(Skp3)2 was confirmed, and the dissociation constant of OmpC·(Skp3)2 was determined to be 1.2 ± 0.4 μM. The precise information will help us to quantitatively depict the role of Skp in the biogenesis of OMPs.


2020 ◽  
Author(s):  
Bishnu P. Paudel ◽  
Aaron Lavel Moye ◽  
Hala Abou Assi ◽  
Roberto El-Khoury ◽  
Scott B. Cohen ◽  
...  

AbstractTelomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.


2019 ◽  
Vol 116 (10) ◽  
pp. 4275-4284 ◽  
Author(s):  
Stefan Niekamp ◽  
Jongmin Sung ◽  
Walter Huynh ◽  
Gira Bhabha ◽  
Ronald D. Vale ◽  
...  

Light microscopy is a powerful tool for probing the conformations of molecular machines at the single-molecule level. Single-molecule Förster resonance energy transfer can measure intramolecular distance changes of single molecules in the range of 2 to 8 nm. However, current superresolution measurements become error-prone below 25 nm. Thus, new single-molecule methods are needed for measuring distances in the 8- to 25-nm range. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1-nm accuracy at distances >2 nm. These techniques can be implemented in high throughput using a standard total internal reflection fluorescence microscope and open-source software. We applied our two-color localization method to uncover an unexpected ∼4-nm nucleotide-dependent conformational change in the coiled-coil “stalk” of the motor protein dynein. We anticipate that these methods will be useful for high-accuracy distance measurements of single molecules over a wide range of length scales.


2021 ◽  
Author(s):  
Kunal Khanna ◽  
Shankar Mandal ◽  
Aaron T Blanchard ◽  
Muneesh Tewari ◽  
Alexander Johnson-Buck ◽  
...  

Biofluids contain cell-free nucleic acids such as microRNAs (miRNAs) and circulating tumor-derived DNAs (ctDNAs) that have emerged as promising disease biomarkers. Conventional detection of these biomarkers by digital PCR and next generation sequencing, although highly sensitive, requires time-consuming extraction and amplification steps that increase the risk of sample loss and cross-contamination, respectively. To achieve the direct, rapid detection of miRNAs and ctDNAs with near-perfect specificity and single-molecule level sensitivity, we herein describe an accelerated amplification-free single-molecule kinetic fingerprinting. This approach, termed intramolecular single-molecule recognition through equilibrium Poisson sampling (iSiMREPS), exploits a dynamic DNA nanosensor comprising a surface anchor and a pair of fluorescent detection probes: one probe captures individual target molecules onto the surface, while the other transiently interrogates them to generate kinetic fingerprints by intramolecular sin-gle-molecule Forster resonance energy transfer (smFRET). Formamide is used to further accelerate the kinetics of probe-target interactions and fingerprinting, while background signals are reduced by removing non-target-bound probes from the surface using toehold-mediated strand displacement. We show that iSiMREPS can detect in as little as 10 seconds two distinct, promising cancer biomarkers, miR-141 and a common EGFR exon 19 deletion, reaching a limit of detection (LOD) of ~3 fM and a mutant allele fraction among excess wild-type as low as 1 in 1 million, or 0.0001%. We anticipate that iSiMREPS will find utility in research and clinical diagnostics based on its features of rapid detection, high specificity, sensitivity, and generalizability.


Sign in / Sign up

Export Citation Format

Share Document