scholarly journals Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex

2004 ◽  
Vol 32 (8) ◽  
pp. 2556-2565 ◽  
Author(s):  
H. Yokoyama
2016 ◽  
Vol 113 (16) ◽  
pp. 4308-4313 ◽  
Author(s):  
Seiji N. Sugiman-Marangos ◽  
Yoni M. Weiss ◽  
Murray S. Junop

Accurate pairing of DNA strands is essential for repair of DNA double-strand breaks (DSBs). How cells achieve accurate annealing when large regions of single-strand DNA are unpaired has remained unclear despite many efforts focused on understanding proteins, which mediate this process. Here we report the crystal structure of a single-strand annealing protein [DdrB (DNA damage response B)] in complex with a partially annealed DNA intermediate to 2.2 Å. This structure and supporting biochemical data reveal a mechanism for accurate annealing involving DdrB-mediated proofreading of strand complementarity. DdrB promotes high-fidelity annealing by constraining specific bases from unauthorized association and only releases annealed duplex when bound strands are fully complementary. To our knowledge, this mechanism provides the first understanding for how cells achieve accurate, protein-assisted strand annealing under biological conditions that would otherwise favor misannealing.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2289-2293 ◽  
Author(s):  
Gerald R Smith ◽  
Michael N Boddy ◽  
Paul Shanahan ◽  
Paul Russell

Abstract Most models of homologous recombination invoke cleavage of Holliday junctions to explain crossing over. The Mus81·Eme1 endonuclease from fission yeast and humans cleaves Holliday junctions and other branched DNA structures, leaving its physiological substrate uncertain. We report here that Schizosaccharomyces pombe mus81 mutants have normal or elevated frequencies of gene conversion but 20- to 100-fold reduced frequencies of crossing over. Thus, gene conversion and crossing over can be genetically separated, and Mus81 is required for crossing over, supporting the hypothesis that the fission yeast Mus81·Eme1 protein complex resolves Holliday junctions in meiotic cells.


Nature ◽  
2021 ◽  
Author(s):  
Roopesh Anand ◽  
Erika Buechelmaier ◽  
Ondrej Belan ◽  
Matthew Newton ◽  
Aleksandra Vancevska ◽  
...  

AbstractDNA double-stranded breaks (DSBs) are deleterious lesions, and their incorrect repair can drive cancer development1. HELQ is a superfamily 2 helicase with 3′ to 5′ polarity, and its disruption in mice confers germ cells loss, infertility and increased predisposition to ovarian and pituitary tumours2–4. At the cellular level, defects in HELQ result in hypersensitivity to cisplatin and mitomycin C, and persistence of RAD51 foci after DNA damage3,5. Notably, HELQ binds to RPA and the RAD51-paralogue BCDX2 complex, but the relevance of these interactions and how HELQ functions in DSB repair remains unclear3,5,6. Here we show that HELQ helicase activity and a previously unappreciated DNA strand annealing function are differentially regulated by RPA and RAD51. Using biochemistry analyses and single-molecule imaging, we establish that RAD51 forms a complex with and strongly stimulates HELQ as it translocates during DNA unwinding. By contrast, RPA inhibits DNA unwinding by HELQ but strongly stimulates DNA strand annealing. Mechanistically, we show that HELQ possesses an intrinsic ability to capture RPA-bound DNA strands and then displace RPA to facilitate annealing of complementary sequences. Finally, we show that HELQ deficiency in cells compromises single-strand annealing and microhomology-mediated end-joining pathways and leads to bias towards long-tract gene conversion tracts during homologous recombination. Thus, our results implicate HELQ in multiple arms of DSB repair through co-factor-dependent modulation of intrinsic translocase and DNA strand annealing activities.


2021 ◽  
Author(s):  
Simon Boulton ◽  
Roopesh Anand ◽  
Erika Buechelmaier ◽  
Ondrej Belan ◽  
Matt Newton ◽  
...  

Abstract DNA double strand breaks (DSBs) are deleterious lesions, and their incorrect repair can drive cancer development1. HELQ is a superfamily 2 helicase with 3’ to 5’ polarity, whose disruption in mice confers germ cells loss, infertility and increased predisposition to ovarian and pituitary tumours2-4. At the cellular level, defects in HELQ result in hypersensitivity to cisplatin and mitomycin C and, persistence of RAD51 foci upon DNA damage3,5. Notably, HELQ binds to RPA and the RAD51 paralog BCDX2 complex but the relevance of these interactions and how HELQ functions in DSB repair remains unclear3,5,6. Here, we report that HELQ helicase activity and a previously unappreciated DNA strand annealing function are differentially regulated by RPA and RAD51. Using biochemistry and single-molecule imaging (SMI), we establish that RAD51 forms a co-complex with and strongly stimulates HELQ as it translocates during DNA unwinding. Conversely, RPA inhibits DNA unwinding by HELQ but strongly stimulates DNA strand annealing. Mechanistically, we show that HELQ possesses an intrinsic ability to capture RPA-bound DNA strands and then displace RPA to facilitate annealing of complementary strands. Finally, we show that HELQ deficiency in cells compromises single-strand annealing (SSA) and microhomology-mediated end joining (MMEJ) pathways and increases long-tract gene conversion tracts (LTGC) during homologous recombination. Thus, our results implicate HELQ in multiple arms of DSB repair by virtue of co-factor dependent modulation of intrinsic translocase and DNA strand annealing activities.


2006 ◽  
Vol 26 (24) ◽  
pp. 9424-9429 ◽  
Author(s):  
Grzegorz Ira ◽  
Dominik Satory ◽  
James E. Haber

ABSTRACT To distinguish among possible mechanisms of repair of a double-strand break (DSB) by gene conversion in budding yeast, Saccharomyces cerevisiae, we employed isotope density transfer to analyze budding yeast mating type (MAT) gene switching in G2/M-arrested cells. Both of the newly synthesized DNA strands created during gene conversion are found at the repaired locus, leaving the donor unchanged. These results support suggestions that mitotic DSBs are primarily repaired by a synthesis-dependent strand-annealing mechanism. We also show that the proportion of crossing-over associated with DSB-induced ectopic recombination is not affected by the presence of nonhomologous sequences at one or both ends of the DSB or the presence of additional sequences that must be copied from the donor.


Author(s):  
K. S. McCarty ◽  
R. F. Weave ◽  
L. Kemper ◽  
F. S. Vogel

During the prodromal stages of sporulation in the Basidiomycete, Agaricus bisporus, mitochondria accumulate in the basidial cells, zygotes, in the gill tissues prior to entry of these mitochondria, together with two haploid nuclei and cytoplasmic ribosomes, into the exospores. The mitochondria contain prominent loci of DNA [Fig. 1]. A modified Kleinschmidt spread technique1 has been used to evaluate the DNA strands from purified whole mitochondria released by osmotic shock, mitochondrial DNA purified on CsCl gradients [density = 1.698 gms/cc], and DNA purified on ethidium bromide CsCl gradients. The DNA appeared as linear strands up to 25 u in length and circular forms 2.2-5.2 u in circumference. In specimens prepared by osmotic shock, many strands of DNA are apparently attached to membrane fragments [Fig. 2]. When mitochondria were ruptured in hypotonic sucrose and then fixed in glutaraldehyde, the ribosomes were released for electron microscopic examination.


Author(s):  
S.K. Aggarwal ◽  
J.M. Fadool

Cisplatin (CDDP) a potent antitumor agent suffers from severe toxic side effects with nephrotoxicity being the major dose-limiting factor, The primary mechanism of its action has been proposed to be through its cross-linking DNA strands. It has also been shown to inactivate various transport enzymes and induce hypocalcemia and hypomagnesemia that may be the underlying cause for some of its toxicities. The present is an effort to study its influence on the parathyroid gland for any hormonal changes that control calcium levels in the body.Male Swiss Wistar rats (Crl: (WI) BR) weighing 200-300 g and of 60 days in age were injected (ip) with cisplatin (7mg/kg in normal saline). The controls received saline injections only. The animals were injected (iv) with calcium (0.5 ml of 10% calcium gluconate/day) and were killed by decapitation on day 1 through 5. Trunk blood was collected in heparinized tubes.


Author(s):  
Werner Kühlbrandt ◽  
Da Neng Wang ◽  
K.H. Downing

The light-harvesting chlorophyll-a/b protein complex (LHC-II) is the most abundant membrane protein in the chloroplasts of green plants where it functions as a molecular antenna of solar energy for photosynthesis. We have grown two-dimensional (2d) crystals of the purified, detergent-solubilized LHC-II . The crystals which measured 5 to 10 μm in diameter were stabilized for electron microscopy by washing with a 0.5% solution of tannin. Electron diffraction patterns of untilted 2d crystals cooled to 130 K showed sharp spots to 3.1 Å resolution. Spot-scan images of 2d crystals were recorded at 160 K with the Berkeley microscope . Images of untilted crystals were processed, using the unbending procedure by Henderson et al . A projection map of the complex at 3.7Å resolution was generated from electron diffraction amplitudes and high-resolution phases obtained by image processing .A difference Fourier analysis with the same image phases and electron diffraction amplitudes recorded of frozen, hydrated specimens showed no significant differences in the 3.7Å projection map. Our tannin treatment therefore does not affect the structural integrity of the complex.


Sign in / Sign up

Export Citation Format

Share Document