scholarly journals A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing

2013 ◽  
Vol 41 (4) ◽  
pp. 2284-2295 ◽  
Author(s):  
Richa Gupta ◽  
Mikhail Ryzhikov ◽  
Olga Koroleva ◽  
Mihaela Unciuleac ◽  
Stewart Shuman ◽  
...  
2015 ◽  
Vol 197 (19) ◽  
pp. 3121-3132 ◽  
Author(s):  
Richa Gupta ◽  
Stewart Shuman ◽  
Michael S. Glickman

ABSTRACTMycobacteria encode three DNA double-strand break repair pathways: (i) RecA-dependent homologous recombination (HR), (ii) Ku-dependent nonhomologous end joining (NHEJ), and (iii) RecBCD-dependent single-strand annealing (SSA). Mycobacterial HR has two presynaptic pathway options that rely on the helicase-nuclease AdnAB and the strand annealing protein RecO, respectively. Ablation ofadnABorrecOindividually causes partial impairment of HR, but loss ofadnABandrecOin combination abolishes HR. RecO, which can accelerate annealing of single-stranded DNAin vitro, also participates in the SSA pathway. The functions of RecF and RecR, which, in other model bacteria, function in concert with RecO as mediators of RecA loading, have not been examined in mycobacteria. Here, we present a genetic analysis ofrecFandrecRin mycobacterial recombination. We find that RecF, like RecO, participates in the AdnAB-independent arm of the HR pathway and in SSA. In contrast, RecR is required for all HR in mycobacteria and for SSA. The essentiality of RecR as an agent of HR is yet another distinctive feature of mycobacterial DNA repair.IMPORTANCEThis study clarifies the molecular requirements for homologous recombination in mycobacteria. Specifically, we demonstrate that RecF and RecR play important roles in both the RecA-dependent homologous recombination and RecA-independent single-strand annealing pathways. Coupled with our previous findings (R. Gupta, M. Ryzhikov, O. Koroleva, M. Unciuleac, S. Shuman, S. Korolev, and M. S. Glickman, Nucleic Acids Res 41:2284–2295, 2013,http://dx.doi.org/10.1093/nar/gks1298), these results revise our view of mycobacterial recombination and place the RecFOR system in a central position in homology-dependent DNA repair.


2013 ◽  
Vol 34 (3) ◽  
pp. 439-445 ◽  
Author(s):  
William I. Towler ◽  
Jie Zhang ◽  
Derek J. R. Ransburgh ◽  
Amanda E. Toland ◽  
Chikashi Ishioka ◽  
...  

2019 ◽  
Author(s):  
Ανδρέας Παναγόπουλος

Η γονιδιωματική σταθερότητα διατηρείται μέσω του συντονισμού μεταξύ των μηχανισμών του φυσιολογικού κυτταρικού κύκλου και των μηχανισμών απόκρισης σε βλάβη στο γενετικό υλικό. Οι παράγοντες που διαδραματίζουν κομβικό ρόλο στη διασύνδεση των συγκεκριμένων μηχανισμών καθίστανται ιδιαίτερα σημαντικοί. Χαρακτηριστικά παραδείγματα αποτελούν τα Cdt1 και Cdc6 που συμβάλλουν στην αδειοδότηση της αντιγραφής του γενετικού υλικού. Μάλιστα, οι εν λόγω παράγοντες διαδραματίζουν κομβικό ρόλο στον καρκίνο όπου η υπερέκφρασή τους οδηγεί σε γονιδιωματική αστάθεια και επικράτηση κυττάρων με ογκογονικές ιδιότητες. Επιπρόσθετα, η σημαντικότητα τους υποδεικνύεται και από το γεγονός πως ένα ευρύ φάσμα μηχανισμών είναι υπεύθυνο για τη ρύθμισή τους τόσο κατά το φυσιολογικό κυτταρικό κύκλο όσο και μετά από βλάβη στο γενετικό υλικό.Η περιοδική πρωτεόλυση πρωτεϊνών είναι ιδιαίτερα σημαντική για τη διατήρηση της κυτταρικής φυσιολογίας. Η διαδικασία της πρωτεόλυσης πραγματοποιείται μέσω της πρόσδεσης αλυσίδων ουβικουϊτίνης στις πρωτεΐνες-υποστρώματα, οι οποίες στη συνέχεια καθίστανται στόχοι αποικοδόμησης από το πρωτεάσωμα. Η λιγάση της ουβικουϊτίνης CRL4Cdt2 αποτελεί ένα σύμπλοκο υπεύθυνο για την ουβικουϊτινιλίωση μεγάλου αριθμού μορίων που συμβάλλουν στην πρόοδο του κυτταρικού κύκλου. Η ρύθμιση μέσω αυτού του συμπλόκου πραγματοποιείται μέσω της πρόσδεσης του υποστρώματος στο PCNA που βρίσκεται στο DNA. Το CRL4Cdt2 είναι ενεργό κατά τη διάρκεια της S φάσης και μετά από βλάβη στο γενετικό υλικό. Παρά το γεγονός πως η εν λόγω λιγάση της ουβικουϊτίνης αποτελεί έναν κεντρικό ρυθμιστή της γονιδιωματικής σταθερότητας εντούτοις ο μοριακός μηχανισμός αναγνώρισης υποστρώματος δεν είχε διαλευκανθεί πλήρως. Το μέχρι πρόσφατα επικρατές μοντέλο όριζε πως το CRL4Cdt2 στρατολογείται στη χρωματίνη αφού πρώτα έχει σχηματιστεί το σύμπλοκο PCNA-υπόστρωμα. Ερευνητικά δεδομένα από διάφορες ομάδες υποδείκνυαν ένα διαφορετικό μηχανισμό σε σχέση με το συγκεκριμένο μοντέλο. Στην παρούσα διατριβή, με τη χρήση μεταλλαγμάτων του υποδοχέα υποστρώματος της λιγάσης, Cdt2 και ακτινοβολίας UV-C καταφέραμε να διαπιστώσουμε πως η συσσώρευση στην περιοχή της βλάβης πραγματοποιείται μέσω του καρβοξυ-τελικού τμήματος της πρωτεΐνης και συγκεκριμένα μέσω μοτίβου PIP-box που εδράζεται στο καρβόξυ-τελικό άκρο. Τα συγκεκριμένα δεδομένα οδήγησαν στην περιγραφή ενός νέου μοντέλου για το μηχανισμό αναγνώρισης υποστρώματος όπου η λιγάση και το υπόστρωμα συσσωρεύονται ανεξάρτητα στο PCNA. Στη συνέχεια ακολουθεί η αναγνώριση και η ουβικουϊτινιλίωση του υποστρώματος το οποίο στοχεύεται για πρωτεόλυση.Οι διπλές θραύσεις στο γενετικό υλικό είναι μία από τις πιο επιζήμιες βλάβες και μπορούν να προκληθούν από ενδογενείς διεργασίες ή εξωγενείς παράγοντες. Αν δεν επιδιορθωθούν ή επιδιορθωθούν με λανθασμένο τρόπο μπορεί να προκαλέσουν γονιδιωματική αστάθεια. Οι κύριοι επιδιορθωτικοί μηχανισμοί που έχουν αναπτυχθεί προκειμένου να αντιμετωπιστούν οι εν λόγω βλάβες είναι η Μη-Ομόλογη Σύνδεση των Άκρων (Non-Homologous End Joining, NHEJ) που λειτουργεί καθ' όλη τη διάρκεια του κυτταρικού κύκλου και είναι επιρρεπής σε λάθη και ο Ομόλογος Ανασυνδυασμός (Homologous Recombination, HR) που λειτουργεί μόνο κατά τις S και G2 φάσεις του κυτταρικού κύκλου και επιδιορθώνει τις διπλές θραύσεις με υψηλή πιστότητα. Όταν οι συγκεκριμένοι μηχανισμοί παρουσιάζουν αδυναμία επιδιόρθωσης των βλαβών στο γενετικό υλικό τότε η επιδιόρθωση επαφίεται στους εναλλακτικούς επιδιορθωτικούς μηχανισμούς που περιλαμβάνουν την Εναλλακτική Σύνδεση των Άκρων (Alternative Non-Homologous End Joining, A-NHEJ) με κύριο υπομονοπάτι τη Σύνδεση των Άκρων ρυθμιζόμενη από Μικρο-ομολογία (Microhomology Mediated End Joining, MMEJ), τη Σύνδεση Μονού Κλώνου (Single Strand Annealing, SSA) και την Επιδιόρθωση Αντιγραφής Επαγόμενης από Θραύση (Break Induced Replication, BIR). Τα συγκεκριμένα επιδιορθωτικά μονοπάτια αν και βελτιώνουν τις πιθανότητες ενός κυττάρου για επιβίωση μετά από βλάβη εντούτοις παρουσιάζονται ιδιαίτερα επιρρεπή σε λάθη. Προηγούμενα ερευνητικά δεδομένα του εργαστηρίου υπέδειξαν την ταχύτατη συσσώρευση του Cdt1 στην περιοχή της εντοπισμένης βλάβης από UV-A παλμικό laser. Στην παρούσα διατριβή πραγματοποιήθηκε εκτεταμένη μελέτη της πιθανής εμπλοκής του Cdt1 στην επιδιόρθωση των διπλών θραύσεων. Τα ερευνητικά δεδομένα από πειράματα με κυτταρικά συστήματα αναφοράς φθορισμού υποδεικνύουν πως ο συγκεκριμένος παράγοντας συμμετέχει στα βασικά μονοπάτια επιδιόρθωσης NHEJ, HR καθώς και στα εναλλακτικά μονοπάτια SSA και BIR. Πειράματα που πραγματοποιήθηκαν με ετοποσίδιο, neocarzinostatin και ακτίνες Χ προκειμένου να διαλευκανθεί το ακριβές σημείο εμπλοκής του Cdt1 στα μονοπάτια επιδιόρθωσης των διπλών θραύσεων δεν οδήγησαν σε κάποιο ξεκάθαρο συμπέρασμα.Στην παρούσα διατριβή διαπιστώθηκε για πρώτη φορά πως ο αδειοδοτικός παράγοντας Cdc6 διαδραματίζει σημαντικό ρόλο στην επιδιόρθωση των διπλών θραύσεων στο γενετικό υλικό. Συγκεκριμένα με τη χρήση UV-A παλμικού laser διαπιστώθηκε πως το Cdc6 συσσωρεύεται ταχύτατα στην περιοχή της εντοπισμένης βλάβης. Πειράματα με ετοποσίδιο και neocarzinostatin καθώς και με κυτταρικά συστήματα αναφοράς φθορισμού υπέδειξαν πως το Cdc6 εμπλέκεται στο μονοπάτι NHEJ και συγκεκριμένα στα αρχικά στάδια κατά τη συσσώρευση των παραγόντων 53BP1 και RIF1 στα σημεία της βλάβης. Στον αντίποδα η συσσώρευση στα σημεία βλάβης των παραγόντων του μονοπατιού HR, pRPA και Rad51 δεν επηρεάζεται από το Cdc6. Τα συγκεκριμένα πειράματα υπέδειξαν επίσης πως το Cdc6 εμπλέκεται στην ενεργοποίηση της κινάσης ATM χωρίς ωστόσο να επηρεάζει τη φωσφορυλίωση της ιστόνης H2AX. Τέλος, στην παρούσα διατριβή διαπιστώθηκε πως η απουσία του Cdc6 οδηγεί σε ευαισθητοποίηση των καρκινικών κυττάρων σε επώαση με γενοτοξικούς παράγοντες, γεγονός που υποδεικνύει πως η εμπλοκή του Cdc6 στα μονοπάτια απόκρισης στη βλάβη είναι σημαντική για την επιβίωση των κυττάρων. Παράλληλα, υποδεικνύει πως η αποσιώπηση του Cdc6 μπορεί να χρησιμοποιηθεί σε θεραπευτικές προσεγγίσεις για την καταπολέμηση του καρκίνου.


2014 ◽  
Vol 229 ◽  
pp. S156
Author(s):  
Xuejing Yang ◽  
Gang Huang ◽  
Fenxia Hou ◽  
Jin Yan ◽  
Xinbiao Guo ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Lynn C. Thomason ◽  
Nina Costantino ◽  
Donald L. Court

ABSTRACTRecombineering,in vivogenetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used inEscherichia coliare the Red system from phage λ and RecET from the defective Rac prophage. We investigated thein vivodependence of recombineering on DNA replication of the recombining substrate using plasmid targets. For λ Red recombination, when DNA replication of a circular target plasmid is prevented, recombination with single-stranded DNA oligonucleotides is greatly reduced compared to that under replicating conditions. For RecET recombination, when DNA replication of the targeted plasmid is prevented, the recombination frequency is also reduced, to a level identical to that seen for the Red system in the absence of replication. The very low level of oligonucleotide recombination observed in the absence of any phage recombination functions is the same in the presence or absence of DNA replication. In contrast, both the Red and RecET systems recombine a nonreplicating linear dimer plasmid with high efficiency to yield a circular monomer. Therefore, the DNA replication requirement is substrate dependent. Our data are consistent with recombination by both the Red and RecET systems occurring predominately by single-strand annealing rather than by strand invasion.IMPORTANCEBacteriophage homologous recombination systems are widely used forin vivogenetic engineering in bacteria. Single- or double-stranded linear DNA substrates containing short flanking homologies to chromosome targets are used to generate precise and accurate genetic modifications when introduced into bacteria expressing phage recombinases. Understanding the molecular mechanism of these recombination systems will facilitate improvements in the technology. Here, two phage-specific systems are shown to require exposure of complementary single-strand homologous targets for efficient recombination; these single-strand regions may be created during DNA replication or by single-strand exonuclease digestion of linear duplex DNA. Previously,in vitrostudies reported that these recombinases promote the single-strand annealing of two complementary DNAs and also strand invasion of a single DNA strand into duplex DNA to create a three-stranded region. Here,in vivoexperiments show that recombinase-mediated annealing of complementary single-stranded DNA is the predominant recombination pathway inE. coli.


2019 ◽  
Vol 51 (9) ◽  
pp. 879-889 ◽  
Author(s):  
Jinbao Li ◽  
Huize Sun ◽  
Yulin Huang ◽  
Yali Wang ◽  
Yuyan Liu ◽  
...  

AbstractDouble strand breaks (DSBs) are the most detrimental type of DNA damage that must be repaired to ensure genome integrity and cell survival. Unrepaired or improperly repaired DSBs can potentially cause tumorigenesis or cell death. DSBs are primarily repaired by non-homologous end joining or homologous recombination (HR). The HR pathway is initiated by processing of the 5′-end of DSBs to generate 3′-end single-strand DNA (ssDNA). Furthermore, the intermediate is channeled to one of the HR sub-pathways, including: (i) double Holliday junction (dHJ) pathway, (ii) synthesis-dependent strand annealing (SDSA), (iii) break-induced replication (BIR), and (iv) single-strand annealing (SSA). In the dHJ sub-pathway, the 3′-ssDNA coated with Rad51 recombinase performs homology search and strand invasion, forming a displacement loop (D-loop). Capture of the second end by the D-loop generates a dHJ intermediate that is subsequently dissolved by DNA helicase or resolved by nucleases, producing non-crossover or crossover products. In SDSA, the newly synthesized strand is displaced from the D-loop and anneals to the end on the other side of the DSBs, producing non-crossovers. In contrast, BIR repairs one-end DSBs by copying the sequence up to the end of the template chromosome, resulting in translocation or loss of heterozygosity. SSA takes place when resection reveals flanking homologous repeats that can anneal, leading to deletion of the intervening sequences. A variety of reporter assays have been developed to monitor distinct HR sub-pathways in both Saccharomyces cerevisiae and mammals. Here, we summarize the principles and representative assays for different HR sub-pathways with an emphasis on the studies in the budding yeast.


2021 ◽  
Author(s):  
Bert van de Kooij ◽  
Alex Kruswick ◽  
Haico van Attikum ◽  
Michael B. Yaffe

DNA double-strand breaks (DSB) are repaired by multiple distinct pathways, with outcomes ranging from error-free repair to extensive mutagenesis and genomic loss. Repair pathway cross-talk and compensation within the DSB-repair network is incompletely understood, despite its importance for genomic stability, oncogenesis, and the outcome of genome editing by CRISPR/Cas9. To address this, we constructed and validated three fluorescent Cas9-based reporters, named DSB-Spectrum, that simultaneously quantify the contribution of multiple distinct pathways to repair of a DSB. These reporters distinguish between DSB-repair by error-free canonical non-homologous end-joining (c-NHEJ) versus homologous recombination (HR; reporter 1), mutagenic repair versus HR (reporter 2), and mutagenic end-joining versus single strand annealing (SSA) versus HR (reporter 3). Using these reporters, we show that inhibition of the essential c-NHEJ factor DNA-PKcs not only increases repair by HR, but also results in a substantial increase in mutagenic repair by SSA. We show that SSA-mediated repair of Cas9-generated DSBs can occur between Alu elements at endogenous genomic loci, and is enhanced by inhibition of DNA-PKcs. Finally, we demonstrate that the short-range end-resection factors CtIP and Mre11 promote both SSA and HR, whereas the long-range end-resection factors DNA2 and Exo1 promote SSA, but reduce HR, when both pathways compete for the same substrate. These new Cas9-based DSB-Spectrum reporters facilitate the rapid and comprehensive analysis of repair pathway crosstalk and DSB-repair outcome.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 515-525 ◽  
Author(s):  
Allison P Davis ◽  
Lorraine S Symington

Abstract The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.


Sign in / Sign up

Export Citation Format

Share Document