scholarly journals The human Shu complex functions with PDS5B and SPIDR to promote homologous recombination

2019 ◽  
Vol 47 (19) ◽  
pp. 10151-10165 ◽  
Author(s):  
Julieta Martino ◽  
Gregory J Brunette ◽  
Jonathan Barroso-González ◽  
Tatiana N Moiseeva ◽  
Chelsea M Smith ◽  
...  

AbstractRAD51 plays a central role in homologous recombination during double-strand break repair and in replication fork dynamics. Misregulation of RAD51 is associated with genetic instability and cancer. RAD51 is regulated by many accessory proteins including the highly conserved Shu complex. Here, we report the function of the human Shu complex during replication to regulate RAD51 recruitment to DNA repair foci and, secondly, during replication fork restart following replication fork stalling. Deletion of the Shu complex members, SWS1 and SWSAP1, using CRISPR/Cas9, renders cells specifically sensitive to the replication fork stalling and collapse caused by methyl methanesulfonate and mitomycin C exposure, a delayed and reduced RAD51 response, and fewer sister chromatid exchanges. Our additional analysis identified SPIDR and PDS5B as novel Shu complex interacting partners and genetically function in the same pathway upon DNA damage. Collectively, our study uncovers a protein complex, which consists of SWS1, SWSAP1, SPIDR and PDS5B, involved in DNA repair and provides insight into Shu complex function and composition.

2006 ◽  
Vol 26 (22) ◽  
pp. 8396-8409 ◽  
Author(s):  
Kristina Herzberg ◽  
Vladimir I. Bashkirov ◽  
Michael Rolfsmeier ◽  
Edwin Haghnazari ◽  
W. Hayes McDonald ◽  
...  

ABSTRACT DNA damage checkpoints coordinate the cellular response to genotoxic stress and arrest the cell cycle in response to DNA damage and replication fork stalling. Homologous recombination is a ubiquitous pathway for the repair of DNA double-stranded breaks and other checkpoint-inducing lesions. Moreover, homologous recombination is involved in postreplicative tolerance of DNA damage and the recovery of DNA replication after replication fork stalling. Here, we show that the phosphorylation on serines 2, 8, and 14 (S2,8,14) of the Rad55 protein is specifically required for survival as well as for normal growth under genome-wide genotoxic stress. Rad55 is a Rad51 paralog in Saccharomyces cerevisiae and functions in the assembly of the Rad51 filament, a central intermediate in recombinational DNA repair. Phosphorylation-defective rad55-S2,8,14A mutants display a very slow traversal of S phase under DNA-damaging conditions, which is likely due to the slower recovery of stalled replication forks or the slower repair of replication-associated DNA damage. These results suggest that Rad55-S2,8,14 phosphorylation activates recombinational repair, allowing for faster recovery after genotoxic stress.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1097-1097
Author(s):  
Masatoshi Takagi ◽  
Junya Unno ◽  
Thoru Kiyono ◽  
Fumiko Honda ◽  
Hirobumi Teraoka ◽  
...  

Abstract Abstract 1097 Poster Board I-119 Hydroxyurea (HU) is an antineoplastic drug used in hematological malignancies, specifically polycythemia vera, essential thrombocytosis or chronic myelogenous leukemia. HU targets cells that are actively replicating DNA by inhibit ing ribonucleotide reductase, which causes an imbalance in the deoxynucleotide triphosphate pool. Stalled replication forks lead to the production of single-stranded DNA (ssDNA), which in some cases is converted to DSBs by unknown mechanisms, an event that is termed replication fork collapse. however, the precise mechanism for DSB induction and the cellular response to persistent replication fork stalling are not fully understood. We show that DSBs are generated in an Artemis nuclease-dependent manner following prolonged stalling caused by exposure to HU, with subsequent activation of the ataxia-telangiectasia mutated (ATM) signaling pathway. DNA-dependent protein kinase (DNA-PK) activity, a prerequisite for the endonuclease activity of Artemis, is also required for DSB generation and subsequent ATM activation. Our findings indicate a novel function of Artemis as a molecular switch that converts single-stranded DNA lesions into DSBs, thereby activating an ATM-dependent fail-safe mechanism following prolonged replication fork stalling. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 30 (1) ◽  
pp. 131-145 ◽  
Author(s):  
Marco Bazzi ◽  
Davide Mantiero ◽  
Camilla Trovesi ◽  
Giovanna Lucchini ◽  
Maria Pia Longhese

ABSTRACT Replication fork stalling caused by deoxynucleotide depletion triggers Rad53 phosphorylation and subsequent checkpoint activation, which in turn play a crucial role in maintaining functional DNA replication forks. How cells regulate checkpoint deactivation after inhibition of DNA replication is poorly understood. Here, we show that the budding yeast protein phosphatase Glc7/protein phosphatase 1 (PP1) promotes disappearance of phosphorylated Rad53 and recovery from replication fork stalling caused by the deoxynucleoside triphosphate (dNTP) synthesis inhibitor hydroxyurea (HU). Glc7 is also required for recovery from a double-strand break-induced checkpoint, while it is dispensable for checkpoint inactivation during methylmethane sulfonate exposure, which instead requires the protein phosphatases Pph3, Ptc2, and Ptc3. Furthermore, Glc7 counteracts in vivo histone H2A phosphorylation on serine 129 (γH2A) and dephosphorylates γH2A in vitro. Finally, the replication recovery defects of HU-treated glc7 mutants are partially rescued by Rad53 inactivation or lack of γH2A formation, and the latter also counteracts hyperphosphorylated Rad53 accumulation. We therefore propose that Glc7 activity promotes recovery from replication fork stalling caused by dNTP depletion and that γH2A dephosphorylation is a critical Glc7 function in this process.


2013 ◽  
Vol 41 (1) ◽  
pp. 314-320 ◽  
Author(s):  
John K. Blackwood ◽  
Neil J. Rzechorzek ◽  
Sian M. Bray ◽  
Joseph D. Maman ◽  
Luca Pellegrini ◽  
...  

During DNA repair by HR (homologous recombination), the ends of a DNA DSB (double-strand break) must be resected to generate single-stranded tails, which are required for strand invasion and exchange with homologous chromosomes. This 5′–3′ end-resection of the DNA duplex is an essential process, conserved across all three domains of life: the bacteria, eukaryota and archaea. In the present review, we examine the numerous and redundant helicase and nuclease systems that function as the enzymatic analogues for this crucial process in the three major phylogenetic divisions.


2006 ◽  
Vol 25 (11) ◽  
pp. 2596-2604 ◽  
Author(s):  
Christophe Possoz ◽  
Sergio R Filipe ◽  
Ian Grainge ◽  
David J Sherratt

2007 ◽  
Vol 19 (1) ◽  
pp. 188
Author(s):  
A. Brero ◽  
D. Koehler ◽  
T. Cremer ◽  
E. Wolf ◽  
V. Zakhartchenko

DNA double-strand breaks (DSBs) are considered the most severe type of DNA lesions, because such lesions, if unrepaired, lead to a loss of genome integrity. Soon after induction of DSBs, chromatin surrounding the damage is modified by phosphorylation of the histone variant H2AX, generating so-called γH2AX, which is a hallmark of DSBs (Takahashi et al. 2005 Cancer Lett. 229, 171–179). γH2AX appears to be a signal for the recruitment of proteins constituting the DNA repair machinery. Depending on the type of damage and the cell cycle stage of the affected cell, DSBs are repaired either by nonhomologous end joining or by homologous recombination using the sister chromatid DNA as template (Hoeijmakers 2001 Nature 411, 366–374). We used immunofluorescence to analyze chromatin composition during bovine development and found γH2AX foci in both male and female pronuclei of IVF embryos. The number and size of foci varied considerably between embryos and between the male and female pronuclei. To test whether the observed γH2AX foci represented sites of active DNA repair, we co-stained IVF zygotes for γH2AX and 3 different proteins involved in homologous recombination repair of DSBs: NBS1 (phosphorylated at amino acid serine 343), 53BP1, and Rad51. We found co-localization of γH2AX foci with phosphorylated NBS1 as well as with Rad51 but did not observe the presence of 53BP1 at γH2AX foci in IVF zygotes. Our finding shows the presence of DSBs in IVF zygotes and suggests the capability of homologous recombination repair. The lack of 53BP1, a component of homologous recombination repair, which usually co-localizes with γH2AX foci at exogenously induced DSBs (Schultz et al. 2000 J. Cell. Biol. 151, 1381–1390) poses the possibility that the mechanism present in early embryos differs substantially from that involved in DNA repair of DSBs in somatic cells.


Sign in / Sign up

Export Citation Format

Share Document