MO067PHASE-SPECIFIC IRF4 AND IRF8 REGULATION/EXPRESSION OF MONONUCLEAR PHAGOCYTES DURING ISCHEMIC ACUTE KIDNEY INJURY/DISEASE

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Na Li ◽  
Stefanie Steiger ◽  
Chenyu Li ◽  
Zhihua Zheng ◽  
Hans-Joachim Anders ◽  
...  

Abstract Background Ischemic acute tubular necrosis is a common cause of acute kidney disease (AKD) and subsequent chronic kidney disease (CKD). The different phases of AKD involve a greater functional diversity of mononuclear phagocytes (MPCs) including resident and infiltrating macrophages and conventional dendritic cells (cDCs). In addition, hematopoietic transcription factors such as IRF4 and IRF8 play an important role in immune cell maturation and polarization that contribute to tissue inflammation and remodeling. However, their role on MPCs polarization and function during AKD are not well understood. Hence, we hypothesized that the dynamically altered MPC subsets contribute to the progression of AKD, accompanied with varied expression of IRF4 and IRF8. Methods AKD was induced by transient unilateral renal pedicle clamping in C57BL/6N mice. After 1, 3, and 7 days kidneys, renal lymph nodes and spleens were collected. Flow cytometry was performed to identify different MPC subsets. GFR was measured and mRNA expression of inflammatory, anti-inflammatory transcription factors determined via RT-PCR. For in vitro experiments, bone marrow-derived macrophages and cDCs, tubular epithelial cells (TECs), renal and splenic resident CD11b+ immune cells isolated from naïve mice were stimulated with LPS or cultured under hypoxic condition for 3 and 10 hours. Bone marrow-derived monocytes were differentiated into macrophages or cDCs, and stimulated with LPS for 3 and 10 hours. After stimulation, cells were harvested for mRNA analysis via RT-PCR. Results We identified four renal phenotypically distinct MPC subsets with diverse expression patterns of CD11b/CD11c during the different phases of post-ischemic AKD. During the early (day 1) and late injury phase (day 3), the number of infiltrating CD11bhiCD11clow R2 and CD11bhiCD11chi R3 macrophage-like subsets increased, along with a significant GFR decline compared with sham-operated mice (see Figure). During the repair phase (day 7), the number of CD11blowCD11clow R1 (resident macrophage-like MPCs) and CD11blowCD11chi R4 (infiltrating cDC-like MPCs) subsets significantly increased (see Figure). Both resident macrophage-like (R1) and cDC-like (R4) MPCs significantly upregulated the expression of IRF8, whereas cDCs-like (R4) MPCs were also positive for IRF4 during the repair phase. This pattern of MPCs was consistent in spleen and renal lymph node. In vitro stimulation of renal and splenic CD11b+ cells from naïve mice with LPS or under hypoxic condition induced a significant upregulation of IRF4 and IRF8 compared to untreated cells. This was also observed in bone marrow-derived macrophages and cDCs but not in TECs. Conclusions Our data indicate that infiltrating macrophage-like and cDC-like MPCs appear in high numbers during the early and late injury phase. Furthermore, both resident macrophage-like and cDC-like MPCs are predominately present during the late injury and recovery phase in AKD with altered IRF4 and IRF8 expression pattern. Further studies are needed to unravel a potential role of IRF4 and IRF8 during the progression of AKD and CKD by e.g. using fate mapping approaches.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Li Na ◽  
Stefanie Steiger ◽  
Lingyan Fei ◽  
Chenyu Li ◽  
Chongxu Shi ◽  
...  

Abstract Background and Aims Post-ischemic acute tubular necrosis is a common cause of acute kidney disease (AKD) and subsequent chronic kidney disease. In AKD, mononuclear phagocytes (MPCs) including conventional dendritic cells (cDCs) are present during the different phases of kidney injury, repair and regeneration. The contribution of cDCs to AKD is still poorly understood. Hence, we hypothesized that transcription factor interferon regulatory factor 8 (IRF8)-specific cDCs regulate the immune response in AKD. Method AKD was induced by unilateral ischemia reperfusion injury in IRF8-deficient Clec9a-specific DCs (IRF8fl/fl Clec9acre/cre or cre/wt) and wild type C57BL/6 mice. Immune phenotyping of leukocytes in kidney and spleen and mRNA expression profiling were performed, as well as kidney function evaluated. For in vitro studies, IRF8 small interfering RNA transfection technology on bone marrow-derived DCs was used. Results In the healthy kidney and lymphoid organ (e.g., spleen and kidney draining lymph node), we identified four MPC subsets according to the diverse expression patterns of CD11b and CD11c. Of which, IRF8 was specifically expressed in the CD11blow CD11chigh R4 subset (containing mainly cDC1). During AKD, IRF8 deficiency in cDCs reduced the number of MHCII+ DCs accumulating among tubulointerstium space without affecting cDC2 or CD64+ DCs, while completely abolished cDC1 in post-ischemic kidney (See Figure). This was accompanied with a decrease in the surface expression of chemokine receptor CCR7 and CCR9, reduction in the number of kidney CD4- CD8+ T cells and Tregs, but a moderate increase in TH1-related and pro-inflammatory cytokines and infiltrating neutrophils in the kidney of mice with IRF8-deficient cDCs. This was in line with reduced kidney function, marked by aggravated GFR loss, elevated plasma BUN level, kidney atrophy, pathological tubular injury and living proximal tubule loss. In vitro, bone marrow-derived IRF8-deficient DCs showed an impaired ability to repair “artificially injured” tubular epithelial cells (TECs), accompanied with less phagocytosis capacity and maturation capacity under necrotic TECs soup or histone stimulation. Conclusion Our data show that the restricted depletion of IRF8 in cDCs reduces the number of infiltrating kidney cDC1, which drives tissue inflammation and damage, and ultimately aggravates post-ischemic AKD. Thus, cDC1s are having a protective role in AKD.


1982 ◽  
Vol 156 (6) ◽  
pp. 1604-1614 ◽  
Author(s):  
E H Burger ◽  
J W Van der Meer ◽  
J S van de Gevel ◽  
J C Gribnau ◽  
G W Thesingh ◽  
...  

The origin of osteoclasts was studied in an in vitro model using organ cultures of periosteum-free embryonic mouse long-bone primordia, which were co-cultured with various cell populations. The bone rudiments were freed of their periosteum-perichondrium by collagenase treatment in a stage before cartilage erosion and osteoclast formation, and co-cultured for 7 d with either embryonic liver or mononuclear phagocytes from various sources. Light and electron microscopic examination of the cultures showed that mineralized matrix-resorbing osteoclasts developed only in bones co-cultured with embryonic liver or with cultured bone marrow mononuclear phagocytes but not when co-cultured with blood monocytes or resident or exudate peritoneal macrophages. Osteoclasts developed from the weakly adherent, but not from the strongly adherent cells of bone marrow cultures, whereas 1,000 rad irradiation destroyed the capacity of such cultures to form osteoclasts. In bone cultures to which no other cells were added, osteoclasts were virtually absent. Bone-resorbing activity of in vitro formed osteoclasts was demonstrated by 45Ca release studies. These studies demonstrate that osteoclasts develop from cells present in cultures of proliferating mononuclear phagocytes and that, at least in our system, monocytes and macrophages are unable to form osteoclasts. The most likely candidates for osteoclast precursor cells seem to be monoblasts and promonocytes.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Femke C. C. van Rhijn-Brouwer ◽  
Bas W. M. van Balkom ◽  
Diana A. Papazova ◽  
Diënty H. M. Hazenbrink ◽  
Anke J. Meijer ◽  
...  

Background. Cell-based therapies are being developed to meet the need for curative therapy in chronic kidney disease (CKD). Bone marrow- (BM-) derived mesenchymal stromal cells (MSCs) enhance tissue repair and induce neoangiogenesis through paracrine action of secreted proteins and extracellular vesicles (EVs). Administration of allogeneic BM MSCs is less desirable in a patient population likely to require a kidney transplant, but potency of autologous MSCs should be confirmed, given previous indications that CKD-induced dysfunction is present. While the immunomodulatory capacity of CKD BM MSCs has been established, it is unknown whether CKD affects wound healing and angiogenic potential of MSC-derived CM and EVs. Methods. MSCs were cultured from BM obtained from kidney transplant recipients (N=15) or kidney donors (N=17). Passage 3 BM MSCs and BM MSC-conditioned medium (CM) were used for experiments. EVs were isolated from CM by differential ultracentrifugation. BM MSC differentiation capacity, proliferation, and senescence-associated β-galactosidase activity was assessed. In vitro promigratory and proangiogenic capacity of BM MSC-derived CM and EVs was assessed using an in vitro scratch wound assay and Matrigel angiogenesis assay. Results. Healthy and CKD BM MSCs exhibited similar differentiation capacity, proliferation, and senescence-associated β-galactosidase activity. Scratch wound migration was not significantly different between healthy and CKD MSCs (P=0.18). Healthy and CKD BM MSC-derived CM induced similar tubule formation (P=0.21). There was also no difference in paracrine regenerative function of EVs (scratch wound: P=0.6; tubulogenesis: P=0.46). Conclusions. Our results indicate that MSCs have an intrinsic capacity to produce proangiogenic paracrine factors, including EVs, which is not affected by donor health status regarding CKD. This suggests that autologous MSC-based therapy is a viable option in CKD.


Blood ◽  
1976 ◽  
Vol 47 (3) ◽  
pp. 369-379
Author(s):  
MJ Cline ◽  
DW Golde

Previous studies using the in vitro diffusion chamber (Marbrook) have shown that bone marrow grown in this system will undergo limited stem cell replication and differentiation to mature granulocytes and mononuclear phagocytes. A series of studies with modified culture systems was initiated to improve cell production and committed stem cell (CFU-C) proliferation in vitro. Introduction of a continuous-flow system and a migration technique providing means of egress for mature neutrophils resulted in substantially improved performance. CFU-C were found to be capable of migration through a 3-mu pore membrane. These studies indicated that membrane surface area, culture medium circulation, and mature cell egress were among the conditions that could be optimized for maximum hematopoietic cell proliferation in suspension culture. The present observations also suggested that large- scale in vitro growth of mammalian bone marrow may be feasible.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Ellen L.W. Kittler ◽  
Stefan O. Peters ◽  
Rowena B. Crittenden ◽  
Michelle E. Debatis ◽  
Hayley S. Ramshaw ◽  
...  

Using a murine bone marrow transplantation model, we evaluated the long-term engraftment of retrovirally transduced bone marrow cells in nonmyeloablated hosts. Male bone marrow was stimulated in a cocktail of interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF ) for 48 hours, then cocultured on the retroviral producer line MDR18.1 for an additional 24 hours. Functional transduction of hematopoietic progenitors was detected in vitro by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of multiple drug resistance 1 (MDR1) mRNA from high proliferative potential-colony forming cell (HPP-CFC) colonies. After retroviral transduction, male bone marrow cells were injected into nonablated female mice. Transplant recipients received three TAXOL (Bristol-Myers, Princeton, NJ) injections (10 mg/kg) over a 14-month period. Transplant recipient tissues were analyzed by Southern blot and fluorescence in situ hybridization for Y-chromosome–specific sequences and showed donor cell engraftment of approximately 9%. However, polymerase chain reaction amplification of DNAs from bone marrow, spleen, and peripheral blood showed no evidence of the transduced MDR1 gene. RT-PCR analysis of total bone marrow RNA showed that transcripts from the MDR1 gene were present in a fraction of the engrafted donor cells. These data show functional transfer of the MDR1 gene into nonmyeloablated murine hosts. However, the high rates of in vitro transduction into HPP-CFC, coupled with the low in vivo engraftment rate of donor cells containing the MDR1 gene, suggest that the majority of stem cells that incorporated the retroviral construct did not stably engraft in the host. Based on additional studies that indicate that ex vivo culture of bone marrow induces an engraftment defect concomitantly with progression of cells through S phase, we propose that the cell cycle transit required for proviral integration reduces or impairs the ability of transduced cells to stably engraft.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2142-2150 ◽  
Author(s):  
Brian J. Freeman ◽  
Marie S. Roberts ◽  
Carole A. Vogler ◽  
Andrew Nicholes ◽  
A. Alex Hofling ◽  
...  

Abstract Bone marrow transplantation (BMT) is relatively effective for the treatment of lysosomal storage diseases. To better understand the contribution of specific hematopoietic lineages to the efficacy of BMT, we transplanted β-glucuronidase–positive mononuclear phagocytes derived from either the peritoneum or from bone marrow in vitro into syngeneic recipients with mucopolysaccharidosis type VII (MPS VII). Cell surface marking studies indicate that the bone marrow-derived cells are less mature than the peritoneal macrophages. However, both cell types retain the ability to home to tissues rich in cells of the reticuloendothelial system after intravenous injection into MPS VII mice. The half-life of both types of donor macrophages is approximately 7 days, and some cells persist for at least 30 days. In several tissues, therapeutic levels of β-glucuronidase are present, and histopathologic analysis demonstrates that lysosomal storage is dramatically reduced in the liver and spleen. Macrophages intravenously injected into newborn MPS VII mice localize to the same tissues as adult mice but are also observed in the meninges and parenchyma of the brain. These data suggest that macrophages play a significant role in the therapeutic efficacy of BMT for lysosomal storage diseases and may have implications for treatments such as gene therapy.


2013 ◽  
Vol 25 (1) ◽  
pp. 295
Author(s):  
B. Mohana Kumar ◽  
W. J. Lee ◽  
Y. M. Lee ◽  
R. Patil ◽  
S. L. Lee ◽  
...  

Mesenchymal stem cells (MSC) are isolated from bone marrow or other tissues, and have properties of self renewal and multilineage differentiation ability. The current study investigated the in vitro differentiation potential of porcine bone marrow derived MSCs into hepatocyte-like cells. The MSC were isolated from the bone marrow of adult miniature pigs (7 months old, T-type, PWG Micro-pig®, PWG Genetics, Seoul, Korea) and adherent cells with fibroblast-like morphology were cultured on plastic. Isolated MSCs were positive for CD29, CD44, CD73, CD90, and vimentin, and negative for CD34, CD45, major histocompatibility complex-class II (MHC-class II), and swine leukocyte antigen-DR (SLA-DR) by flow cytometry analysis. Further, trilineage differentiation of MSC into osteocytes (alkaline phosphatase, von Kossa and Alizarin red), adipocytes (Oil Red O), and chondrocytes (Alcian blue) was confirmed. Differentiation of MSC into hepatocyte-like cells was induced with sequential supplementation of growth factors, cytokines, and hormones for 21 days as described previously (Taléns-Visconti et al. 2006 World J. Gastroenterol. 12, 5834–5845). Morphological analysis, expression of liver-specific markers, and functional assays were performed to evaluate the hepatic differentiation of MSC. Under hepatogenic conditions, MSC acquired cuboidal morphology with cytoplasmic granules. These hepatocyte-like cells expressed α-fetoprotein (AFP), albumin (ALB), cytokeratin 18 (CK18), cytochrome P450 7A1 (CYP7A1), and hepatocyte nuclear factor 1 (HNF-1) markers by immunofluorescence assay. In addition, the expression of selected markers was demonstrated by Western blotting analysis. In accordance with these features, RT-PCR revealed transcripts of AFP, ALB, CK18, CYP7A1, and HNF-1α. Further, the relative expression levels of these transcripts were analysed by quantitative RT-PCR after normalizing to the expression of the endogenous control, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data were analysed statistically by one-way ANOVA using PASW statistics 18 (SPSS Inc., Chicago, IL, USA), and significance was considered at P < 0.05. The results showed that the relative expressions of selected marker genes in hepatocyte-like cells were significantly increased compared with that in untreated MSC. The generated hepatocyte-like cells showed glycogen storage as analysed by periodic acid-Schiff (PAS) staining. Moreover, the induced cells produced urea at Day 21 of culture compared with control MSC. In conclusion, our results indicate the potential of porcine MSC to differentiate in vitro into hepatocyte-like cells. Further studies on the functional properties of hepatocyte-like cells are needed to use porcine MSC as an ideal source for liver cell therapy and preclinical drug evaluation. This work was supported by Basic Science Research Program through the National Research Foundation (NRF), funded by the Ministry of Education, Science and Technology (2010-0010528) and the Next-Generation BioGreen 21 Program (No. PJ009021), Rural Development Administration, Republic of Korea.


2011 ◽  
Vol 23 (1) ◽  
pp. 249
Author(s):  
B. Mohana Kumar ◽  
T. H. Kim ◽  
Y. M. Lee ◽  
G. H. Maeng ◽  
B. G. Jeon ◽  
...  

Differentiation of mesenchymal stem cells (MSC) into specialised cells in vitro before transplantation may improve the engraftment efficiency of the transplanted cells as well as the safety and efficacy of treatment. To understand the differentiation process and the functional identities of cells in an animal model, we examined the in vitro differentiation capacity of porcine MSC (3–6 passage) into cardiomyocyte-like and neuron-like cells. The MSC isolated from the bone marrow of postnatal miniature piglets [T-type, PWG Micro-pig (R), PWG Genetics, Korea] exhibited a typical fibroblast-like morphology and expressed the specific markers, such as CD29, CD44, and CD90. After 21 days of culture in induction media, MSC revealed the appropriate phenotype of osteocytes (von Kossa and Alizarin red), adipocytes (Oil red O), and chondrocytes (Alcian blue). Ther MSC were further induced into cardiomyogenic and neurogenic differentiation following the protocols described earlier (Tomita et al. 2002 J. Thorac. Cardiovasc. Surg. 123, 1132–1140) and (Woodbury et al. 2002 J. Neurosci. Res. 96, 908–917), respectively, with minor modifications. Expression of lineage-specific markers was evaluated by immunocytochemistry, and RT-PCR and quantitative PCR (RT-qPCR). For cardiomyogenic differentiation, MSC were stimulated with 10 μM 5-azacytidine for 24 h, 3 days, or 7 days, and the cells were maintained in culture for 21 days. Upon induction, MSC exhibited elongated and stick-like morphology with extended cytoplasmic processes, and toward the end of culture, cells formed aggregates and myotube-like structures. Immunostaining was positive for the markers of cardiomyocyte-like cells, such as α-smooth muscle actin, cardiac troponin T, desmin, and α-cardiac actin. The RT-PCR and RT-qPCR analysis showed the expression and a time dependent up-regulation of cardiac troponin T, desmin, α-cardiac actin, and β-myosin heavy chain genes. Following induction with neuronal-specific media for 3 days, above 80% of MSC acquired the morphology of neuron-like cells with bi- or multipolar cell processes forming a network-like structure. Induced cells with neuronal phenotype were positively stained for nestin, neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), and neurofilament-M (NF-M). The expression of neural transcripts, such as nestin, GFAP, and NF-M, was further confirmed by RT-PCR and RT-qPCR. In conclusion, our results showed the potential of porcine MSC to differentiate in vitro into cardiomyocyte-like and neuron-like cells, thus offering a useful model for studying their functional and molecular properties before transplantation. This work was supported by Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (2010-0010528) and BioGreen 21 (20070301034040), Republic of Korea.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Ellen L.W. Kittler ◽  
Stefan O. Peters ◽  
Rowena B. Crittenden ◽  
Michelle E. Debatis ◽  
Hayley S. Ramshaw ◽  
...  

Abstract Using a murine bone marrow transplantation model, we evaluated the long-term engraftment of retrovirally transduced bone marrow cells in nonmyeloablated hosts. Male bone marrow was stimulated in a cocktail of interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF ) for 48 hours, then cocultured on the retroviral producer line MDR18.1 for an additional 24 hours. Functional transduction of hematopoietic progenitors was detected in vitro by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of multiple drug resistance 1 (MDR1) mRNA from high proliferative potential-colony forming cell (HPP-CFC) colonies. After retroviral transduction, male bone marrow cells were injected into nonablated female mice. Transplant recipients received three TAXOL (Bristol-Myers, Princeton, NJ) injections (10 mg/kg) over a 14-month period. Transplant recipient tissues were analyzed by Southern blot and fluorescence in situ hybridization for Y-chromosome–specific sequences and showed donor cell engraftment of approximately 9%. However, polymerase chain reaction amplification of DNAs from bone marrow, spleen, and peripheral blood showed no evidence of the transduced MDR1 gene. RT-PCR analysis of total bone marrow RNA showed that transcripts from the MDR1 gene were present in a fraction of the engrafted donor cells. These data show functional transfer of the MDR1 gene into nonmyeloablated murine hosts. However, the high rates of in vitro transduction into HPP-CFC, coupled with the low in vivo engraftment rate of donor cells containing the MDR1 gene, suggest that the majority of stem cells that incorporated the retroviral construct did not stably engraft in the host. Based on additional studies that indicate that ex vivo culture of bone marrow induces an engraftment defect concomitantly with progression of cells through S phase, we propose that the cell cycle transit required for proviral integration reduces or impairs the ability of transduced cells to stably engraft.


Sign in / Sign up

Export Citation Format

Share Document