296 IN VITRO DIFFERENTIATION OF PORCINE BONE MARROW-DERIVED MESENCHYMAL STEM CELLS INTO HEPATOCYTE-LIKE CELLS

2013 ◽  
Vol 25 (1) ◽  
pp. 295
Author(s):  
B. Mohana Kumar ◽  
W. J. Lee ◽  
Y. M. Lee ◽  
R. Patil ◽  
S. L. Lee ◽  
...  

Mesenchymal stem cells (MSC) are isolated from bone marrow or other tissues, and have properties of self renewal and multilineage differentiation ability. The current study investigated the in vitro differentiation potential of porcine bone marrow derived MSCs into hepatocyte-like cells. The MSC were isolated from the bone marrow of adult miniature pigs (7 months old, T-type, PWG Micro-pig®, PWG Genetics, Seoul, Korea) and adherent cells with fibroblast-like morphology were cultured on plastic. Isolated MSCs were positive for CD29, CD44, CD73, CD90, and vimentin, and negative for CD34, CD45, major histocompatibility complex-class II (MHC-class II), and swine leukocyte antigen-DR (SLA-DR) by flow cytometry analysis. Further, trilineage differentiation of MSC into osteocytes (alkaline phosphatase, von Kossa and Alizarin red), adipocytes (Oil Red O), and chondrocytes (Alcian blue) was confirmed. Differentiation of MSC into hepatocyte-like cells was induced with sequential supplementation of growth factors, cytokines, and hormones for 21 days as described previously (Taléns-Visconti et al. 2006 World J. Gastroenterol. 12, 5834–5845). Morphological analysis, expression of liver-specific markers, and functional assays were performed to evaluate the hepatic differentiation of MSC. Under hepatogenic conditions, MSC acquired cuboidal morphology with cytoplasmic granules. These hepatocyte-like cells expressed α-fetoprotein (AFP), albumin (ALB), cytokeratin 18 (CK18), cytochrome P450 7A1 (CYP7A1), and hepatocyte nuclear factor 1 (HNF-1) markers by immunofluorescence assay. In addition, the expression of selected markers was demonstrated by Western blotting analysis. In accordance with these features, RT-PCR revealed transcripts of AFP, ALB, CK18, CYP7A1, and HNF-1α. Further, the relative expression levels of these transcripts were analysed by quantitative RT-PCR after normalizing to the expression of the endogenous control, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data were analysed statistically by one-way ANOVA using PASW statistics 18 (SPSS Inc., Chicago, IL, USA), and significance was considered at P < 0.05. The results showed that the relative expressions of selected marker genes in hepatocyte-like cells were significantly increased compared with that in untreated MSC. The generated hepatocyte-like cells showed glycogen storage as analysed by periodic acid-Schiff (PAS) staining. Moreover, the induced cells produced urea at Day 21 of culture compared with control MSC. In conclusion, our results indicate the potential of porcine MSC to differentiate in vitro into hepatocyte-like cells. Further studies on the functional properties of hepatocyte-like cells are needed to use porcine MSC as an ideal source for liver cell therapy and preclinical drug evaluation. This work was supported by Basic Science Research Program through the National Research Foundation (NRF), funded by the Ministry of Education, Science and Technology (2010-0010528) and the Next-Generation BioGreen 21 Program (No. PJ009021), Rural Development Administration, Republic of Korea.

2012 ◽  
Vol 24 (1) ◽  
pp. 218
Author(s):  
B. Mohana Kumar ◽  
G. H. Maeng ◽  
Y. M. Lee ◽  
T. H. Kim ◽  
W. J. Lee ◽  
...  

In the context of multipotent stem cells, mesenchymal stem cells (MSC) derived from bone marrow have been identified as most promising cell types for the treatment of smooth muscle related injured tissues and organs. In the present study, the ability of porcine bone marrow derived MSC to differentiate in vitro into smooth muscle cells (SMC) was examined. MSC were isolated from domestic pig bone marrow by their readily adherent property to tissue culture plastic with fibroblast-like morphology. Cells were analysed for the expression of MSC specific markers by flow cytometer and mesenchymal lineage differentiation by following previously published protocols. Differences in values were analysed by one-way ANOVA using SPSS and data are presented as mean ± SD. Flow cytometry analysis of MSC showed the positive expression of markers, such as CD29 (97.33 ± 2.08%), CD44 (97.67 ± 1.15%), CD73 (62.33 ± 2.89%), CD90 (96.67 ± 2.08%) and vimentin (59.33 ± 2.52%). In contrast, the expression levels were significantly lower for CD34 (3.33 ± 1.53%), CD45 (3.67 ± 1.53%), major histocompatibility complex class II (MHC class II, 10.33 ± 2.52%) and swine leukocyte antigen-DR (SLA-DR, 9.67 ± 2.08%). The MSC were further confirmed by their ability to differentiate in vitro along the distinct lineages of adipocytes (Oil red O), osteocytes (von Kossa and Alizarin red) and chondrocytes (Alcian blue). Induction of SMC differentiation was performed with supplementation of porcine transforming growth factor-β (TGF-β) and recombinant human bone morphogenic protein 4 (BMP4) as described earlier (Wang et al. 2010 Tissue Eng. A 1201–1213) with minor modifications. Upon induction, porcine MSC acquired myoblast-like morphology with intracellular thin filaments. Immunofluorescence staining showed the presence of early and late markers of smooth muscle differentiation, such as α-smooth muscle actin (α-SMA), calponin, smooth muscle 22 α (SM22α) and smooth muscle-myosin heavy chain (SM-MHC) and their expression levels varied from 22.65% to 56.75%. Later, the expression of selected markers was demonstrated by Western blotting analysis. Consistent with this phenotypic characterisation, reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (RT-qPCR) further showed the expression and a sequential up-regulation of transcripts for α-SMA, calponin, SM22α and SM-MHC. However, no expression of SMC-specific markers was observed in untreated MSC. In conclusion, these findings suggest the ability of porcine MSC from bone marrow to differentiate in vitro into SMC in the presence of growth factors. Further understanding of SMC differentiation with functional properties would be essential for employing porcine MSC as a useful model for cell-based tissue engineering and regeneration strategies. This work was supported by Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (2010-0010528) and BioGreen 21 (20070301034040), Republic of Korea.


2011 ◽  
Vol 23 (1) ◽  
pp. 248
Author(s):  
J. H. Lee ◽  
Y. M. Lee ◽  
G. H. Maeng ◽  
S. L. Lee ◽  
G. J. Rho

The canine has been a useful animal model for the study of fundamental mechanisms and the testing of new therapies for several human pathologies using mesenchymal stem cells (MSC). For preclinical applications, the most commonly used source of canine MSC is bone marrow. Because the amount of autologous bone marrow that can be obtained is limited, skin tissue could supply a noninvasive alternative with large quantities available for the establishment of MSC. In this study, we isolated canine MSC (cMSC) from ear skin and evaluated the expression of transcriptional factors and in vitro differentiation into multiple mesenchymal lineages. The cMSC isolated from the ear skin of a female beagle dog (6 years old) were cultured in advanced-DMEM/F12 (1:1, v/v) supplemented with 10% serum replacement at 37°C, 5% CO2 in a humidified atmosphere. The cMSC at passage 3 were analysed for expression of surface markers (CD44, CD90, and CD105) and transcriptional factors (Oct-4, Nanog, and Sox2) using flow cytometry, immunohistochemical staining and RT-PCR, respectively. Differentiations into adipocytes and osteocytes of cMSC were carried out under controlled conditions for 2 and 4 weeks and evaluated by staining (Oil Red O, von Kossa and Alizarin Red S, respectively). The cMSC were induced to differentiate into neural cells in the controlled condition for 6 h. Neuronal differentiated cMSC were evaluated by immunohistochemical staining, RT-PCR, and Western blot of specific markers of neuron, such as Î2-tubulin, microtubule associated protein (MAP-2), neuronfilament M (NF-M), nerve growth factor (NGF), and nestin. The MSC surface markers such as CD44, 90, and 105 were highly detected, and transcriptional factors (Oct-4, Nanog, and Sox2) were expressed in cMSC. Adipocyte induced cells were positive by staining with Oil Red O, and osteocytes were stained by von Kossa and Alizarin Red S. Neuronal specific markers such as Î2-tubulin, MAP-2, NF-M, NGF, and nestin were expressed in the neuron induced cMSC. In conclusion, canine ear-skin-derived MSC have the capacity for differentiation into multiple lineages and have a confirmed great capability for neuronal differentiation. Hence, canine ear skin tissue could be considered a source for applications of MSC for neuronal regeneration therapy of canine and a preclinical research model for human. This work was supported by Grant No. 2007031034040 from Bio-organ and Grant No. 200908FHT010204005 from Biogreen21.


2020 ◽  
Author(s):  
Sangeetha Kannan ◽  
Jyotirmoy Ghosh ◽  
Sujoy K. Dhara

AbstractMultipotent porcine mesenchymal stem cells (pMSC) are indispensable for research and therapeutic use. Derivation and culture media might affect the selection of MSC subpopulation and thus the differentiation potential of cells. In this study we evaluated the effects of αMEM, aDMEM, M199, αMEM/M199, aDMEM/M199 and αMEM/aDMEM media on porcine bone marrow MSC derivation; pre-differentiation expression of ALP, COL1A1, SPP1 and BGLAP osteogenic marker genes at passage 5 and 10 pMSC; and differentiation potential of passage 5 pMSC. Morphological changes and matrix formation in osteogenic cells were evaluated by microscopical examination and calcium deposit in osteocytes was confirmed by Alizarin Red S staining. Results indicated media independent selection of different bone marrow MSC subpopulations with different surface marker gene expressions. Many pMSC subpopulations in different media had CD14+ expressing cells. We also observed basal media dependent changes in osteogenic markers expression and differentiation potential of pMSC. The αMEM/aDMEM media grown pMSC showed best osteogenic differentiation potential. We thus recommended the testing of αMEM/aDMEM mixed media in other species for pre-differentiation MSC culture that are intended for better osteogenic differentiation.SummaryPre-differentiation basal media influence osteogenic differentiation potential of mesenchymal stem cells (MSC). Among the tested media, αMEM/aDMEM was the best for pre-differentiation porcine MSC culture intending to use in osteogenesis.


2021 ◽  
Vol 11 (5) ◽  
pp. 957-962
Author(s):  
Ainiwaerjiang Damaola ◽  
Maerdan Aierken ◽  
Mieralimu Muertizha ◽  
Abudouaini Abudoureheman ◽  
Haishan Lin ◽  
...  

We aimed to explore the effects of rat bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation via analyzing miR-3148 expression in patients with osteoporosis. Realtime quantitative PCR was conducted for assessing microRNA-3148 expression. BMSCs from SD rats were transfected with microRNA-3148 mimics and microRNA-3148 inhibitor via liposomal trans-fection method utilizing Lipo2000, followed by analysis of microRNA-3148 level. After 10-days of osteogenic differentiation induction, alkaline phosphatase (ALP) staining and alizarin red (ARS) staining were done to investigate the osteogenic differentiation potential. Simultaneously, qRT-PCR measured the expression of osteogenesis marker genes (BMP and Runx2) in each group. qRT-PCR analysis revealed a high expression of miR-3148 in the bone tissue and the serum samples from patients with osteoporosis in comparison with healthy individuals. In addition, miRNA-3148 mimics could retard the osteogenic differentiation of BMSCs, while microRNA-3148 inhibitor could prompt the procedure. MicroRNA-3148 was highly expressed in the skeletal tissues and the serum samples from patients with osteoporosis and it could restrain the differentiation of BMSCs into osteoblasts, suggesting that it might be a novel therapeutic target for treating osteoporosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Xudong Wang ◽  
Tongzhou Liang ◽  
Jincheng Qiu ◽  
Xianjian Qiu ◽  
Bo Gao ◽  
...  

Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro culture results in loss of MSC stemness. The inflammation that occurs at stem cell transplant sites (such as that resulting from TNF-α) is a contributing factor for stem cell treatment failure. Currently, there is little evidence regarding the protective role of melatonin with regard to the negative effects of TNF-α on the stemness of MSCs. In this study, we report a melatonin-based method to reduce the inflammatory effects on the stemness of bone marrow mesenchymal stem cells (BMMSCs). The results of colony formation assays, Alizarin red staining, western blotting, and reverse transcription-polymerase chain reactions suggest that melatonin can reverse the inflammatory damage caused by TNF-α treatment in the third, seventh, and tenth generations of primary BMMSCs (vs. control and the TNF-α-treated group). Meanwhile, a detailed analysis of the molecular mechanisms showed that the melatonin receptor and YAP signaling pathway are closely related to the role that melatonin plays in negative inflammatory effects against BMMSCs. In addition, in vivo experiments showed that melatonin could reverse the damage caused by TNF-α on bone regeneration by BMMSCs in nude mice. Overall, our results suggest that melatonin can reverse the loss of stemness caused by inflammatory factor TNF-α in BMMSCs. Our results also provide a practical strategy for the application of BMMSCs in tissue engineering and cell therapy.


Biology Open ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. bio053280
Author(s):  
Sangeetha Kannan ◽  
Jyotirmoy Ghosh ◽  
Sujoy K. Dhara

ABSTRACTMultipotent porcine mesenchymal stem cells (pMSC) are invaluable for research and therapeutic use in regenerative medicine. Media used for derivation and expansion of pMSC may play an important role for the selection of MSC subpopulation at an early stage and thereby, the specific basal medium may also affect differentiation potential of these cells. The present study was undertaken to evaluate the effects of αMEM, aDMEM, M199, αMEM/M199, aDMEM/M199 and αMEM/aDMEM media on (1) porcine bone marrow MSC derivation; (2) expression of number of osteogenic markers (ALP, COL1A1, SPP1 and BGLAP) at 5th and 10th passage in pMSC before differentiation; and (3) differentiation of pMSC (at 5th passage) to osteogenic lineage. Morphological changes and matrix formation in osteogenic cells were evaluated by microscopic examination. Calcium deposits in osteocytes were confirmed by Alizarin Red S staining. Based on expression of different markers, it was evident that selection of bone marrow pMSC subpopulations was independent of basal media used. However, the differentiation of those pMSCs, specifically to osteogenic lineage, was dependent on the medium used for expansion of pMSC at the pre-differentiation stage. We demonstrated here that the pMSC grown in combined αMEM/aDMEM (1:1) medium expressed number of osteogenic markers and these pMSC underwent osteogenic differentiation most efficiently, in comparison to porcine mesenchymal stem cells grown in other media. In conclusion, osteogenic differentiation potential of pMSC maintained in αMEM/aDMEM medium was observed significantly higher compared to cells cultivated in other media and therefore, the combined medium αMEM/aDMEM (1:1) may preferentially be used for expansion of pMSC, if needed for osteogenic differentiation.


2011 ◽  
Vol 23 (1) ◽  
pp. 249
Author(s):  
B. Mohana Kumar ◽  
T. H. Kim ◽  
Y. M. Lee ◽  
G. H. Maeng ◽  
B. G. Jeon ◽  
...  

Differentiation of mesenchymal stem cells (MSC) into specialised cells in vitro before transplantation may improve the engraftment efficiency of the transplanted cells as well as the safety and efficacy of treatment. To understand the differentiation process and the functional identities of cells in an animal model, we examined the in vitro differentiation capacity of porcine MSC (3–6 passage) into cardiomyocyte-like and neuron-like cells. The MSC isolated from the bone marrow of postnatal miniature piglets [T-type, PWG Micro-pig (R), PWG Genetics, Korea] exhibited a typical fibroblast-like morphology and expressed the specific markers, such as CD29, CD44, and CD90. After 21 days of culture in induction media, MSC revealed the appropriate phenotype of osteocytes (von Kossa and Alizarin red), adipocytes (Oil red O), and chondrocytes (Alcian blue). Ther MSC were further induced into cardiomyogenic and neurogenic differentiation following the protocols described earlier (Tomita et al. 2002 J. Thorac. Cardiovasc. Surg. 123, 1132–1140) and (Woodbury et al. 2002 J. Neurosci. Res. 96, 908–917), respectively, with minor modifications. Expression of lineage-specific markers was evaluated by immunocytochemistry, and RT-PCR and quantitative PCR (RT-qPCR). For cardiomyogenic differentiation, MSC were stimulated with 10 μM 5-azacytidine for 24 h, 3 days, or 7 days, and the cells were maintained in culture for 21 days. Upon induction, MSC exhibited elongated and stick-like morphology with extended cytoplasmic processes, and toward the end of culture, cells formed aggregates and myotube-like structures. Immunostaining was positive for the markers of cardiomyocyte-like cells, such as α-smooth muscle actin, cardiac troponin T, desmin, and α-cardiac actin. The RT-PCR and RT-qPCR analysis showed the expression and a time dependent up-regulation of cardiac troponin T, desmin, α-cardiac actin, and β-myosin heavy chain genes. Following induction with neuronal-specific media for 3 days, above 80% of MSC acquired the morphology of neuron-like cells with bi- or multipolar cell processes forming a network-like structure. Induced cells with neuronal phenotype were positively stained for nestin, neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), and neurofilament-M (NF-M). The expression of neural transcripts, such as nestin, GFAP, and NF-M, was further confirmed by RT-PCR and RT-qPCR. In conclusion, our results showed the potential of porcine MSC to differentiate in vitro into cardiomyocyte-like and neuron-like cells, thus offering a useful model for studying their functional and molecular properties before transplantation. This work was supported by Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (2010-0010528) and BioGreen 21 (20070301034040), Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document