scholarly journals In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes.

1982 ◽  
Vol 156 (6) ◽  
pp. 1604-1614 ◽  
Author(s):  
E H Burger ◽  
J W Van der Meer ◽  
J S van de Gevel ◽  
J C Gribnau ◽  
G W Thesingh ◽  
...  

The origin of osteoclasts was studied in an in vitro model using organ cultures of periosteum-free embryonic mouse long-bone primordia, which were co-cultured with various cell populations. The bone rudiments were freed of their periosteum-perichondrium by collagenase treatment in a stage before cartilage erosion and osteoclast formation, and co-cultured for 7 d with either embryonic liver or mononuclear phagocytes from various sources. Light and electron microscopic examination of the cultures showed that mineralized matrix-resorbing osteoclasts developed only in bones co-cultured with embryonic liver or with cultured bone marrow mononuclear phagocytes but not when co-cultured with blood monocytes or resident or exudate peritoneal macrophages. Osteoclasts developed from the weakly adherent, but not from the strongly adherent cells of bone marrow cultures, whereas 1,000 rad irradiation destroyed the capacity of such cultures to form osteoclasts. In bone cultures to which no other cells were added, osteoclasts were virtually absent. Bone-resorbing activity of in vitro formed osteoclasts was demonstrated by 45Ca release studies. These studies demonstrate that osteoclasts develop from cells present in cultures of proliferating mononuclear phagocytes and that, at least in our system, monocytes and macrophages are unable to form osteoclasts. The most likely candidates for osteoclast precursor cells seem to be monoblasts and promonocytes.

Blood ◽  
1979 ◽  
Vol 54 (2) ◽  
pp. 485-500 ◽  
Author(s):  
R van Furth ◽  
JA Raeburn ◽  
TL van Zwet

Abstract In this study human mononuclear phagocytes from the bone marrow (promonocytes and monocytes), peripheral blood monocytes, and tissue macrophages from the skin and the peritoneal cavity were studied with respect to their morphological, cytochemical, and functional characteristics, cell surface receptors, and 3H-thymidine incorporation in vitro. The results show similarities between mononuclear phagocytes of the three body compartments with respect to esterase staining, the presence of peroxidase-positive granules, the presence of IgG and C receptors, and pinocytic and phagocytic activity. Promonocytes are the most immature mononuclear phagocytes identified in human bone marrow, and since about 80% of these cells incorporate 3H-thymidine, they are actively dividing cells. Monocytes, whether in bone marrow or the peripheral blood, and both skin and peritoneal macrophages label minimally with 3H-thymidine and thus are nondividing cells. Since the characteristics of mononuclear phagocytes in man and mouse do not diverge greatly, it is probable that the cell sequence based on in vitro and in vivo 3H-thymidine labeling studies in the mouse holds for man as well. The successive stages of development of the human mononuclear phagocyte cell line will then be as follows: monoblasts (not yet characterized in man) divide to form promonocytes, and these cells in turn divide and give rise to monocytes that do not divide further; they leave the bone marrow, circulate in the peripheral blood, and finally become macrophages in the various tissues.


1970 ◽  
Vol 132 (4) ◽  
pp. 813-828 ◽  
Author(s):  
Ralph van Furth ◽  
Martina M. C. Diesselhoff-den Dulk

The mononuclear phagocytes of the bone marrow can be classified into two cell types, promonocytes and monocytes. The present study was performed to establish whether the promonocytes are the progenitors of the monocytes and to determine the kinetic characteristics of the promonocytes and monocytes in the bone marrow compartment. Both in vitro labeling studies with thymidine-3H and determination of the relative amount of DNA in the nuclei of individual cells showed that under normal steady-state conditions the promonocytes are proliferating cells and the monocytes, nondividing cells. In vivo labeling studies provided further evidence that the promonocytes are the progenitor cells of the monocytes. During the first 24 hr after labeling, the promonocytes showed a constant high level of labeling (about 70%). The mean grain count of these cells decreased with time. The labeling index of the monocytes of the bone marrow increased during the first 24 hr after in vivo labeling, but during the same period the mean grain counts remained almost constant, with values amounting to about half those of the promonocytes during the first 6 hr of the experiment. The data concerning the labeling indices and the percentage distribution ratio of the promonocytes and monocytes in the bone marrow, and the labeling indices of the peripheral blood monocytes are used to construct a model population. The results lead to the conclusions that the promonocytes are multiplicative cells and that both daughter cells arising from the division of a promonocyte are monocytes. The DNA-synthesis time found for the promonocytes is 13.6 hr. From this value, the average generation time was computed to be 19.5 hr.


2020 ◽  
Vol 21 (17) ◽  
pp. 6110
Author(s):  
Ineke D.C. Jansen ◽  
Wikky Tigchelaar-Gutter ◽  
Jolanda M. A. Hogervorst ◽  
Teun J. de Vries ◽  
Paul Saftig ◽  
...  

Lysosome associated membrane proteins (LAMPs) are involved in several processes, among which is fusion of lysosomes with phagosomes. For the formation of multinucleated osteoclasts, the interaction between receptor activator of nuclear kappa β (RANK) and its ligand RANKL is essential. Osteoclast precursors express RANK on their membrane and RANKL is expressed by cells of the osteoblast lineage. Recently it has been suggested that the transport of RANKL to the plasma membrane is mediated by lysosomal organelles. We wondered whether LAMP-2 might play a role in transportation of RANKL to the plasma membrane of osteoblasts. To elucidate the possible function of LAMP-2 herein and in the formation of osteoclasts, we analyzed these processes in vivo and in vitro using LAMP-2-deficient mice. We found that, in the presence of macrophage colony stimulating factor (M-CSF) and RANKL, active osteoclasts were formed using bone marrow cells from calvaria and long bone mouse bone marrow. Surprisingly, an almost complete absence of osteoclast formation was found when osteoclast precursors were co-cultured with LAMP-2 deficient osteoblasts. Fluorescence-activated cell sorting FACS analysis revealed that plasma membrane-bound RANKL was strongly decreased on LAMP-2 deficient osteoblasts. These results suggest that osteoblastic LAMP-2 is required for osteoblast-induced osteoclast formation in vitro.


Blood ◽  
1979 ◽  
Vol 54 (2) ◽  
pp. 485-500 ◽  
Author(s):  
R van Furth ◽  
JA Raeburn ◽  
TL van Zwet

In this study human mononuclear phagocytes from the bone marrow (promonocytes and monocytes), peripheral blood monocytes, and tissue macrophages from the skin and the peritoneal cavity were studied with respect to their morphological, cytochemical, and functional characteristics, cell surface receptors, and 3H-thymidine incorporation in vitro. The results show similarities between mononuclear phagocytes of the three body compartments with respect to esterase staining, the presence of peroxidase-positive granules, the presence of IgG and C receptors, and pinocytic and phagocytic activity. Promonocytes are the most immature mononuclear phagocytes identified in human bone marrow, and since about 80% of these cells incorporate 3H-thymidine, they are actively dividing cells. Monocytes, whether in bone marrow or the peripheral blood, and both skin and peritoneal macrophages label minimally with 3H-thymidine and thus are nondividing cells. Since the characteristics of mononuclear phagocytes in man and mouse do not diverge greatly, it is probable that the cell sequence based on in vitro and in vivo 3H-thymidine labeling studies in the mouse holds for man as well. The successive stages of development of the human mononuclear phagocyte cell line will then be as follows: monoblasts (not yet characterized in man) divide to form promonocytes, and these cells in turn divide and give rise to monocytes that do not divide further; they leave the bone marrow, circulate in the peripheral blood, and finally become macrophages in the various tissues.


Author(s):  
K. E. Muse ◽  
D. G. Fischer ◽  
H. S. Koren

Mononuclear phagocytes, a pluripotential cell line, manifest an array of basic extracellular functions. Among these physiological regulatory functions is the expression of spontaneous cytolytic potential against tumor cell targets.The limited observations on human cells, almost exclusively blood monocytes, initially reported limited or a lack of tumoricidal activity in the absence of antibody. More recently, freshly obtained monocytes have been reported to spontaneously impair the biability of tumor target cells in vitro (Harowitz et al., 1979; Montavani et al., 1979; Hammerstrom, 1979). Although the mechanism by which effector cells express cytotoxicity is poorly understood, discrete steps can be distinguished in the process of cell mediated cytotoxicity: recognition and binding of effector to target cells,a lethal-hit stage, and subsequent lysis of the target cell. Other important parameters in monocyte-mediated cytotoxicity include, activated state of the monocyte, effector cell concentrations, and target cell suseptibility. However, limited information is available with regard to the ultrastructural changes accompanying monocyte-mediated cytotoxicity.


1980 ◽  
Vol 152 (2) ◽  
pp. 419-437 ◽  
Author(s):  
I Goldschneider ◽  
D Metcalf ◽  
F Battye ◽  
T Mandel

A scheme is presented whereby pluripotent hemopoietic stem cells (PHSC) from rat bone marrow can be enriched 320-fold with the aid of the fluorescence- activated cell sorter. This scheme is based on the observations that PHSC are strongly positive for Thy-1 antigen (upper 10th percentile); have light- scattering properties (size distribution) between those of bone marrow lymphocytes and myeloid progenitor cells; and are relatively resistant to cortisone. It is estimated that PHSC may constitute 80 percent of the cells isolated according to these parameters. Candidate PHSC are described at the light and electron microscopic levels. At least two populations of accessory cells appear to influence the number and/or the nature of the hemopoietic colonies that form in the in vivo spleen colony-forming unit assay. Putative amplifier cells are strongly Thy-1(+) and cortisone sensitive; putative suppressor cells are weakly Thy-1(+) and cortisone resistant. Three subsets of granulocyte (G) -macrophage (M) progenitor cells (in vitro colony-forming cells [CFC]) are identified on the basis of relative fluorescence intensity for Thy-1 antigen: G-CFC are strongly Thy-l(+); M-CFC are weakly Thy-l(+); and cells that produce mixed G and M CFC have intermediate levels of Thy-1. GM-cluster-forming cells and mature G and M are Thy-1(-). The results suggest that G-CFC are bipotential cells that give rise to G and M-CFC; and that the latter produce mature M through a cluster- forming cell intermediate. Thy-1 antigen is also demonstrated on members of the eosinophil, megakaryocyte, erythrocyte, and lymphocyte cell series in rat bone marrow. In each instance, the relative concentration of Thy-1 antigen is inversely related to the state of cellular differentiation.


1969 ◽  
Vol 114 (4) ◽  
pp. 785-792 ◽  
Author(s):  
Jayasree Nath ◽  
H G Bray

A comparison has been made of the effect of 1H,2H,4H(5H)-octafluorocyclohexane, which is highly toxic (LD50 17mg./kg. in rats), and of 1H,4H(2H)-nonafluorocyclohexane, which is relatively non-toxic (LD50>440mg./kg. in rats), on the respiration of rat liver homogenates and mitochondria in vitro. 1H,2H,4H(5H)-Octafluorocyclohexane strongly inhibited the respiration of both homogenates and mitochondria, but neither compound had any significant effect on glycolysis or on glutamate dehydrogenase or NADH–cytochrome c reductase activity. 1H,2H,4H(5H)-Octafluorocyclohexane, however, caused a very marked inhibition of cytochrome oxidase activity, causing an almost complete lesion in this region of the respiratory chain. 1H,4H(2H)-Nonafluorocyclohexane was without effect in this respect. A marked decrease in turbidity of mitochondrial suspensions at 520nm. was caused by addition of both compounds, the effect being greater with 1H,2H,4H(5H)-octafluorocyclohexane. ATP, Mg2+ and bovine serum albumin did not reverse these changes. Mitochondrial adenosine triphosphatase activity was increased twofold by the toxic compound, but only slightly by the non-toxic compound. Electron-microscopic examination of mitochondria treated with 1H,2H,4H(5H)-octafluorocyclohexane revealed gross morphological damage, whereas the effect of 1H,4H(2H)-nonafluorocyclohexane appeared to be merely to cause swelling. The results obtained account, to some extent at any rate, for the toxic effects of 1H,2H,4H(5H)-octafluorocyclohexane.


Blood ◽  
1976 ◽  
Vol 47 (3) ◽  
pp. 369-379
Author(s):  
MJ Cline ◽  
DW Golde

Previous studies using the in vitro diffusion chamber (Marbrook) have shown that bone marrow grown in this system will undergo limited stem cell replication and differentiation to mature granulocytes and mononuclear phagocytes. A series of studies with modified culture systems was initiated to improve cell production and committed stem cell (CFU-C) proliferation in vitro. Introduction of a continuous-flow system and a migration technique providing means of egress for mature neutrophils resulted in substantially improved performance. CFU-C were found to be capable of migration through a 3-mu pore membrane. These studies indicated that membrane surface area, culture medium circulation, and mature cell egress were among the conditions that could be optimized for maximum hematopoietic cell proliferation in suspension culture. The present observations also suggested that large- scale in vitro growth of mammalian bone marrow may be feasible.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 380-387 ◽  
Author(s):  
F Cozzolino ◽  
M Torcia ◽  
D Aldinucci ◽  
A Rubartelli ◽  
A Miliani ◽  
...  

Plasma cells isolated from bone marrow (BM) aspirates of 12 patients with multiple myeloma (MM) and nine patients with monoclonal gammopathy of undetermined significance (MGUS) were analyzed for production of cytokines with bone-resorbing activity, such as interleukin-1 (IL-1), tumor necrosis factor (TNF), and lymphotoxin (LT). Culture supernatants of plasma cells from MM, but not from MGUS or normal donor, invariably contained high amounts of IL-1-beta and lower amounts of IL-1-alpha. With a single exception, TNF/LT biologic activity was not detected in the same supernatants. IL-6 was present in two of five supernatants tested. Normal B lymphocytes released both IL-1 and TNF/LT activities for four days after activation in vitro; however, production of these cytokines ceased at the final stage of plasma cell. Unexpectedly, the mRNA extracted from MM plasma cell hybridized with TNF- and LT- specific, as well as IL-1-specific probes, although the culture supernatants did not contain detectable TNF/LT biologic activity. When tested in the fetal rat long bone assay, MM plasma cell supernatants displayed a strong osteoclast-activating factor (OAF) activity, which was greatly reduced but not completely abolished by neutralizing anti- IL-1 antibodies. Anti-TNF or anti-LT antibodies were ineffective in the same test. We conclude that the IL-1 released in vivo by malignant plasma cells has a major role in pathogenesis of lytic bone lesions of human MM.


1999 ◽  
Vol 112 (21) ◽  
pp. 3657-3666 ◽  
Author(s):  
T. Laitala-Leinonen ◽  
C. Lowik ◽  
S. Papapoulos ◽  
H.K. Vaananen

The role of proton transport and production in osteoclast differentiation was studied in vitro by inhibiting the transcription/translation of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) by antisense RNA molecules. Antisense RNAs targeted against CA II, or the 16 kDa or 60 kDa subunit of V-ATPase were used to block the expression of the specific proteins. A significant decrease in bone resorption rate and TRAP-positive osteoclast number was seen in rat bone marrow cultures and fetal mouse metacarpal cultures after antisense treatment. Intravacuolar acidification in rat bone marrow cells was also significantly decreased after antisense treatment. The CA II antisense RNA increased the number of TRAP-positive mononuclear cells, suggesting inhibition of osteoclast precursor fusion. Antisense molecules decreased the number of monocytes and macrophages, but increased the number of granulocytes in marrow cultures. GM-CSF, IL-3 and IL-6 were used to stimulate haematopoietic stem cell differentiation. The 16 kDa V-ATPase antisense RNA abolished the stimulatory effect of GM-CSF, IL-3 and IL-6 on TRAP-positive osteoclast formation, but did not affect the formation of monocytes and macrophages after IL-3 treatment, or the formation of granulocytes after IL-6 treatment. These results suggest that CA II and V-ATPase are needed, not only for the actual resorption, but also for osteoclast formation in vitro.


Sign in / Sign up

Export Citation Format

Share Document