P0019MICROVESICLES FROM MESENCHYMAL STEM CELLS OVEREXPRESSING MIR-34A INHIBIT TGF-BETA-1-INDUCED EPITHELIAL-MESENVHYMAL TRANSITION IN RENAL TUBULAR EPITHELIAL CELLS IN VITRO

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Juan He ◽  
Yali Jiang ◽  
Yan Wang ◽  
Xiujuan Tian ◽  
Shiren Sun

Abstract Background and Aims The application of microRNAs (miRNAs) in the therapy of kidney diseases is hampered by difficulties in delivering miRNAs effectively. Nano-sized microvesicles (MVs) are known as natural carriers of small RNAs. Our prior work has demonstrated that MVs isolated from mesenchymal stem cells (MSCs) attenuated kidney injuries induced by unilateral ureteral obstruction and 5/6 subtotal nephrectomy in mice. The present work aimed at evaluating the effects of miR-34a-5p (miR-34a)-modified MSC-MVs on transforming growth factor (TGF)-β1 induced fibrosis and apoptosis in vitro. Method Bone marrow MSCs were further modified by lentiviruses overexpressing miR-34a, and MVs were collected from these MSCs to treat HK-2 renal tubular cells exposed to TGF-β1. Alterations in epithelial-mesenchymal transition (EMT) and cell survival were further determined. Results We first demonstrated that MVs generated by miR-34a-modified MSCs contained more miR-34a. By analyzing the expression levels of epithelial markers (E-cadherin and Tight Junction Protein 1 (TJP1)) and mesenchymal markers (α-SMA and fibronectin), we found that the pro-fibrotic TGF-β1 induced EMT was remarkably suppressed by miR-34a-enriched MSC-MVs. Notch-1 receptor and Jagged-1 ligand, two major molecules of Notch signaling pathway, are predicted targets of miR-34a. We further found that the elevation in Notch-1 and Jagged-1 induced by TGF-β1 was inhibited by miR-34a-enriched MSC-MVs. The inhibitory effects of miR-34a-enriched MSC-MVs on EMT and Notch signaling pathway were stronger than the control MSC-MVs. In addition, TGF-β1 exposure also induced apoptosis in HK-2 cells. Although miR-34amofidied MSC-MVs could inhibit TGF-β1-triggered apoptosis in HK-2 cells, the effects were less significant than the control MSC-MVs. This phenomenon may be resulted from the pro-apoptotic effects of miR-34a. Conclusion Our study demonstrates that miR-34a-overexpressing MSC-MVs inhibit EMT induced by pro-fibrotic TGF-β1 in renal tubular epithelial cells, possibly through inhibiting Jagged-1/Notch-1 pathway. Genetic modification of MSC-MVs with anti-fibrotic molecule may present a novel strategy for treatment of renal injuries.

2021 ◽  
Vol 11 ◽  
Author(s):  
Lei Wu ◽  
Chao Rong ◽  
Qing Zhou ◽  
Xin Zhao ◽  
Xue-Mei Zhuansun ◽  
...  

Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury (AKI). However, the potential function of MSCs in chronic kidney disease remains elusive. Renal fibrosis is the common endpoint of chronic progressive kidney diseases and causes a considerable health burden worldwide. In this study, the protective effects of bone marrow mesenchymal stem cells (BM-MSCs) were assessed in repeated administration of low-dose cisplatin-induced renal fibrosis mouse model in vivo as well as a TGF-β1-induced fibrotic model in vitro. Differentially expressed miRNAs in mouse renal tubular epithelial cells (mRTECs) regulated by BM-MSCs were screened by high-throughput sequencing. We found microRNA (miR)-146a-5p was the most significant up-regulated miRNA in mRTECs. In addition, the gene Tfdp2 was identified as one target gene of miR-146a-5p by bioinformatics analysis. The expression of Tfdp2 in the treatment of BM-MSCs on cisplatin-induced renal injury was evaluated by immunohistochemistry analysis. Our results indicate that BM-MSC attenuates cisplatin-induced renal fibrosis by regulating the miR-146a-5p/Tfdp2 axis in mRTECs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Guo ◽  
Rong Wang ◽  
Donghai Liu

Sepsis is a common risk factor for acute kidney injury (AKI). Bone marrow-derived mesenchymal stem cells (BMSCs) bear multi-directional differentiation potential. This study explored the role of BMSCs in sepsis-induced AKI (SI-AKI). A rat model of SI-AKI was established through cecal ligation and perforation. The SI-AKI rats were injected with CM-DiL-labeled BMSCs, followed by evaluation of pathological injury of kidney tissues and kidney injury-related indicators and inflammatory factors. HK-2 cells were treated with lipopolysaccharide (LPS) to establish SI-SKI model in vitro. Levels of mitochondrial proteins, autophagy-related proteins, NLRP3 inflammasome-related protein, and expressions of Parkin and SIRT1 in renal tubular epithelial cells (RTECs) of kidney tissues and HK-2 cells were detected. The results showed that BMSCs could reach rat kidney tissues and alleviate pathological injury of SI-SKI rats. BMSCs inhibited inflammation and promoted mitophagy of RTECs and HK-2 cells in rats with SI-AKI. BMSCs upregulated expressions of Parkin and SIRT1 in HK-2 cells. Parkin silencing or SIRT1 inhibitor reversed the promoting effect of BMSCs on mitophagy. BMSCs inhibited apoptosis and pyroptosis of RTECs in kidney tissues by upregulating SIRT1/Parkin. In conclusion, BMSCs promoted mitophagy and inhibited apoptosis and pyroptosis of RTECs in kidney tissues by upregulating SIRT1/Parkin, thereby ameliorating SI-AKI.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jinhua Zhang ◽  
Bo Yang ◽  
Lilin Luo ◽  
Linhui Li ◽  
Xuantao Yang ◽  
...  

Human bone marrow mesenchymal stem cells (h-BMSCs) have the potential to differentiate into dopaminergic neuron-like cells to treat Parkinson’s disease. The Notch signaling pathway has been implicated in the regulation of cell fate decisions such as differentiation of BMSCs. This study investigated changes in the expression of Notch-related genes in the differentiation of BMSCs in vitro into dopaminergic (DA) neuron-like cells. BMSCs transfected with empty lentiviral vectors served as the control group and those transfected with NTN and Lmx1α recombinant lentiviral vectors served as the experimental group. After induction and culture of NTN and Lmx1α-transfected h-BMSCs for 21 days, the cells exhibited features of dopaminergic neuron-like cells, which were observed by transmission and scanning electron microscopy and verified by immunofluorescence of tyrosine hydroxylase (TH) and dopamine transporter (DAT). These induced cells could secrete dopamine and had basic action potentials. Expression of the neural stem cell (NSC) markers, including octamer-binding protein (Oct4), paired box gene 6 (Pax6), and sex determining region Y-box 1 (SOX1), increased on day 14 of induction and decreased on day 21 of induction during differentiation. The human Notch signaling pathway PCR array showed a differential expression of Notch-related genes during the differentiation of h-BMSCs into DA neuron-like cells in vitro relative to that in the control group. In conclusion, h-BMSCs overexpressing NTN and Lmx1α can successfully be induced to differentiate into dopaminergic neuron-like cells with a neuronal phenotype exhibiting fundamental biological functions in vitro, and NTN and Lmx1α may affect the expression of Notch-related genes during differentiation.


Sign in / Sign up

Export Citation Format

Share Document