MO360MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY: A SYSTEMATIC REVIEW

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Iacopo Vagliano ◽  
Nicholas Chesnaye ◽  
Jan Hendrik Leopold ◽  
Kitty J Jager ◽  
Ameen Abu Hanna ◽  
...  

Abstract Background and Aims Acute kidney injury (AKI) has a substantial impact on global disease burden of Chronic Kidney Disease. To assist physicians with the timely diagnosis of AKI, several prognostic models have been developed to improve early recognition across various patient populations with varying degrees of predictive performance. In the prediction of AKI, machine learning (ML) techniques have been demonstrated to improve on the predictive ability of existing models that rely on more conventional statistical methods. ML is a broad term which refers to various types of models: Parametric models, such as linear or logistic regression use a pre-specified model form which is believed to fit the data, and its parameters are estimated. Non-parametric models, such as decision trees, random forests, and neural networks may have varying complexity (e.g. the depth of a classification tree model) based on the data. Deep learning neural network models exploit temporal or spatial arrangements in the data to deal with complex predictors. Given the rapid growth and development of ML methods and models for AKI prediction over the past years, in this systematic review, we aim to appraise the current state-of-the-art regarding ML models for the prediction of AKI. To this end, we focus on model performance, model development methods, model evaluation, and methodological limitations. Method We searched the PubMed and ArXiv digital libraries, and selected studies that develop or validate an AKI-related multivariable ML prediction model. We extracted data using a data extraction form based on the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) and CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklists. Results Overall, 2,875 titles were screened and thirty-four studies were included. Of those, thirteen studies focussed on intensive care, for which the US derived MIMIC dataset was commonly used; thirty-one studies both developed and validated a model; twenty-one studies used single-centre data. Non-parametric ML methods were used more often than regression and deep learning. Random forests was the most popular method, and often performed best in model comparisons. Deep learning was typically used (and also effective) when complex features were included (e.g., with text or time series). Internal validation was often applied, and the performance of ML models was usually compared against logistic regression. However, the simple training/test split was often used, which does not account for the variability of the training and test samples. Calibration, external validation, and interpretability of results were rarely considered. Comparisons of model performance against medical scores or clinicians were also rare. Reproducibility was limited, as data and code were usually unavailable. Conclusion There is an increasing number of ML models for AKI, which are mostly developed in the intensive care environment largely due to the availability of the MIMIC dataset. Most studies are single-centre, and lack a prospective design. More complex models based on deep learning are emerging, with the potential to improve predictions for complex data, such as time-series, but with the disadvantage of being less interpretable. Future studies should pay attention to using calibration measures, external validation, and on improving model interpretability, in order to improve uptake in clinical practice. Finally, sharing data and code could improve reproducibility of study findings.

BMJ Open ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. e016591 ◽  
Author(s):  
Luke Eliot Hodgson ◽  
Alexander Sarnowski ◽  
Paul J Roderick ◽  
Borislav D Dimitrov ◽  
Richard M Venn ◽  
...  

ObjectiveCritically appraise prediction models for hospital-acquired acute kidney injury (HA-AKI) in general populations.DesignSystematic review.Data sourcesMedline, Embase and Web of Science until November 2016.EligibilityStudies describing development of a multivariable model for predicting HA-AKI in non-specialised adult hospital populations. Published guidance followed for data extraction reporting and appraisal.Results14 046 references were screened. Of 53 HA-AKI prediction models, 11 met inclusion criteria (general medicine and/or surgery populations, 474 478 patient episodes) and five externally validated. The most common predictors were age (n=9 models), diabetes (5), admission serum creatinine (SCr) (5), chronic kidney disease (CKD) (4), drugs (diuretics (4) and/or ACE inhibitors/angiotensin-receptor blockers (3)), bicarbonate and heart failure (4 models each). Heterogeneity was identified for outcome definition. Deficiencies in reporting included handling of predictors, missing data and sample size. Admission SCr was frequently taken to represent baseline renal function. Most models were considered at high risk of bias. Area under the receiver operating characteristic curves to predict HA-AKI ranged 0.71–0.80 in derivation (reported in 8/11 studies), 0.66–0.80 for internal validation studies (n=7) and 0.65–0.71 in five external validations. For calibration, the Hosmer-Lemeshow test or a calibration plot was provided in 4/11 derivations, 3/11 internal and 3/5 external validations. A minority of the models allow easy bedside calculation and potential electronic automation. No impact analysis studies were found.ConclusionsAKI prediction models may help address shortcomings in risk assessment; however, in general hospital populations, few have external validation. Similar predictors reflect an elderly demographic with chronic comorbidities. Reporting deficiencies mirrors prediction research more broadly, with handling of SCr (baseline function and use as a predictor) a concern. Future research should focus on validation, exploration of electronic linkage and impact analysis. The latter could combine a prediction model with AKI alerting to address prevention and early recognition of evolving AKI.


BMJ Open ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. e046274
Author(s):  
Danqiong Wang ◽  
Weiwen Zhang ◽  
Jian Luo ◽  
Honglong Fang ◽  
Shanshan Jing ◽  
...  

IntroductionAcute kidney injury (AKI) has high morbidity and mortality in intensive care units, which can lead to chronic kidney disease, more costs and longer hospital stay. Early identification of AKI is crucial for clinical intervention. Although various risk prediction models have been developed to identify AKI, the overall predictive performance varies widely across studies. Owing to the different disease scenarios and the small number of externally validated cohorts in different prediction models, the stability and applicability of these models for AKI in critically ill patients are controversial. Moreover, there are no current risk-classification tools that are standardised for prediction of AKI in critically ill patients. The purpose of this systematic review is to map and assess prediction models for AKI in critically ill patients based on a comprehensive literature review.Methods and analysisA systematic review with meta-analysis is designed and will be conducted according to the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS). Three databases including PubMed, Cochrane Library and EMBASE from inception through October 2020 will be searched to identify all studies describing development and/or external validation of original multivariable models for predicting AKI in critically ill patients. Random-effects meta-analyses for external validation studies will be performed to estimate the performance of each model. The restricted maximum likelihood estimation and the Hartung-Knapp-Sidik-Jonkman method under a random-effects model will be applied to estimate the summary C statistic and 95% CI. 95% prediction interval integrating the heterogeneity will also be calculated to pool C-statistics to predict a possible range of C-statistics of future validation studies. Two investigators will extract data independently using the CHARMS checklist. Study quality or risk of bias will be assessed using the Prediction Model Risk of Bias Assessment Tool.Ethics and disseminationEthical approval and patient informed consent are not required because all information will be abstracted from published literatures. We plan to share our results with clinicians and publish them in a general or critical care medicine peer-reviewed journal. We also plan to present our results at critical care international conferences.OSF registration number10.17605/OSF.IO/X25AT.


Sign in / Sign up

Export Citation Format

Share Document