Electric cell-substrate impedance sensing in kidney research

Author(s):  
Takamasa Iwakura ◽  
Julian A Marschner ◽  
Zhi Bo Zhao ◽  
Monika Katarzyna Świderska ◽  
Hans-Joachim Anders

Abstract Electric cell-substrate impedance sensing (ECIS) is a quantitative, label-free, non-invasive analytical method allowing continuous monitoring of the behaviour of adherent cells by online recording of transcellular impedance. ECIS offers a wide range of practical applications to study cell proliferation, migration, differentiation, toxicity and monolayer barrier integrity. All of these applications are relevant for basic kidney research, e.g. on endothelial cells, tubular and glomerular epithelial cells. This review gives an overview on the fundamental principles of the ECIS technology. We name strengths and remaining hurdles for practical applications, present an ECIS array reuse protocol, and review its past, present and potential future contributions to preclinical kidney research.

Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 62
Author(s):  
James J. W. Hucklesby ◽  
Akshata Anchan ◽  
Simon J. O’Carroll ◽  
Catherine E. Angel ◽  
E. Scott Graham

Electric Cell-substrate Impedance Sensing (ECIS), xCELLigence and cellZscope are commercially available instruments which are able to measure the impedance of cellular monolayers continuously and with high precision. The small currents used allow the label-free, real-time monitoring of the cells in a non-invasive manner. Despite the widespread use of these systems individually, direct comparisons between the systems have not been published. In order to compare the sensitivity of the instruments, the responses of the brain microvascular endothelial cell line hCMVEC to the inflammatory cytokines TNFα and IL1β were measured on all three instruments simultaneously. All three instruments showed transient decreases, followed by prolonged increases in impedance. Although xCELLigence could detect these changes, it was unable to determine which component of the barrier was affected. In contrast, ECIS and cellZscope were both able to attribute responses to particular barrier components, and ECIS had a higher sensitivity than cellZscope. Finally, as cellZscope uses Transwells, it allows access to the basolateral compartment, an important advantage of this technology. Furthermore, although xCELLigence readings are equivalent to ECIS, the reduced frequency range greatly limits interpretation. This work demonstrates that instruments must be carefully selected in order to ensure that they are appropriate for the experimental questions being asked.


The Analyst ◽  
2011 ◽  
Vol 136 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Jongin Hong ◽  
Karthikeyan Kandasamy ◽  
Mohana Marimuthu ◽  
Cheol Soo Choi ◽  
Sanghyo Kim

2008 ◽  
Vol 232 (2) ◽  
pp. 240-247 ◽  
Author(s):  
A. MÖLDER ◽  
M. SEBESTA ◽  
M. GUSTAFSSON ◽  
L. GISSELSON ◽  
A. GJÖRLOFF WINGREN ◽  
...  

2017 ◽  
Vol 22 (8) ◽  
pp. 1035-1043
Author(s):  
Harald Hundsberger ◽  
Anita Koppensteiner ◽  
Elisabeth Hofmann ◽  
Doris Ripper ◽  
Maren Pflüger ◽  
...  

Celiac disease (CD) is a chronic inflammatory condition caused by the ingestion of gliadin-containing food in genetically susceptible individuals. Undigested peptides of gliadin exert various effects, including increased intestinal permeability and inflammation in the small intestine. Although many therapeutic approaches are in development, a gluten-free diet is the only effective treatment for CD. Affecting at least 1% of the population in industrialized countries, it is important to generate therapeutic options against CD. Here, we describe the establishment of a high-throughput screening (HTS) platform based on AlphaLISA and electrical cell–substrate impedance sensing (ECIS) technology for the identification of anti-inflammatory and barrier-protective compounds in human enterocytes after pepsin-trypsin-digested gliadin (PT-gliadin) treatment. Our results show that the combination of these HTS technologies enables fast, reliable, simple, and label-free screening of IgY antibodies against PT-gliadin. Using this platform, we have identified a new chicken anti-PT-gliadin IgY antibody as a potential anti-CD agent.


2014 ◽  
Vol 60 (1) ◽  
pp. S177-S178
Author(s):  
W. Gamal ◽  
P. Treskes ◽  
C. Chesne ◽  
J.N. Plevris ◽  
P.-O. Bagnaninchi ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4568
Author(s):  
Michael H. Guerra ◽  
Thangal Yumnamcha ◽  
Abdul-Shukkur Ebrahim ◽  
Elizabeth A. Berger ◽  
Lalit Pukhrambam Singh ◽  
...  

Disruption of retinal pigment epithelial (RPE barrier integrity is a hallmark feature of various retinal blinding diseases, including diabetic macular edema and age-related macular degeneration, but the underlying causes and pathophysiology are not completely well-defined. One of the most conserved phenomena in biology is the progressive decline in mitochondrial function with aging leading to cytopathic hypoxia, where cells are unable to use oxygen for energy production. Therefore, this study aimed to thoroughly investigate the role of cytopathic hypoxia in compromising the barrier functionality of RPE cells. We used Electric Cell-Substrate Impedance Sensing (ECIS) system to monitor precisely in real time the barrier integrity of RPE cell line (ARPE-19) after treatment with various concentrations of cytopathic hypoxia-inducing agent, Cobalt(II) chloride (CoCl2). We further investigated how the resistance across ARPE-19 cells changes across three separate parameters: Rb (the electrical resistance between ARPE-19 cells), α (the resistance between the ARPE-19 and its substrate), and Cm (the capacitance of the ARPE-19 cell membrane). The viability of the ARPE-19 cells and mitochondrial bioenergetics were quantified with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and seahorse technology, respectively. ECIS measurement showed that CoCl2 reduced the total impedance of ARPE-19 cells in a dose dependent manner across all tested frequencies. Specifically, the ECIS program’s modelling demonstrated that CoCl2 affected Rb as it begins to drastically decrease earlier than α or Cm, although ARPE-19 cells’ viability was not compromised. Using seahorse technology, all three concentrations of CoCl2 significantly impaired basal, maximal, and ATP-linked respirations of ARPE-19 cells but did not affect proton leak and non-mitochondrial bioenergetic. Concordantly, the expression of a major paracellular tight junction protein (ZO-1) was reduced significantly with CoCl2-treatment in a dose-dependent manner. Our data demonstrate that the ARPE-19 cells have distinct dielectric properties in response to cytopathic hypoxia in which disruption of barrier integrity between ARPE-19 cells precedes any changes in cells’ viability, cell-substrate contacts, and cell membrane permeability. Such differences can be used in screening of selective agents that improve the assembly of RPE tight junction without compromising other RPE barrier parameters.


2016 ◽  
Vol 9 (10) ◽  
pp. 107001 ◽  
Author(s):  
Yu Jin Kim ◽  
Ka Ram Song ◽  
Hee-Dae Kim ◽  
Bum Chul Park ◽  
Young Keun Kim ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 2114
Author(s):  
Manishi Pallavi ◽  
Jenora Waterman ◽  
Youngmi Koo ◽  
Jagannathan Sankar ◽  
Yeoheung Yun

Magnesium (Mg)-based alloys have the potential for bone repair due to their properties of biodegradation, biocompatibility, and structural stability, which can eliminate the requirement for a second surgery for the removal of the implant. Nevertheless, uncontrolled degradation rate and possible cytotoxicity of the corrosion products at the implant sites are known current challenges for clinical applications. In this study, we assessed in vitro cytotoxicity of different concentrations (0 to 50 mM) of possible corrosion products in the form of magnesium oxide (MgO) and magnesium hydroxide (Mg(OH)2) nanoparticles (NPs) in human fetal osteoblast (hFOB) 1.19 cells. We measured cell proliferation, adhesion, migration, and cytotoxicity using a real-time, label-free, non-invasive electric cell-substrate impedance sensing (ECIS) system. Our results suggest that 1 mM concentrations of MgO/Mg(OH)2 NPs are tolerable in hFOB 1.19 cells. Based on our findings, we propose the development of innovative biodegradable Mg-based alloys for further in vivo animal testing and clinical trials in orthopedics.


2019 ◽  
Vol 2 (1) ◽  
pp. 93-97 ◽  
Author(s):  
Eugen Gheorghiu

Abstract Non-invasive, label-free assessment of membrane potential of living cells is still a challenging task. The theory linking membrane potential to the low frequency α dispersion exhibited by suspensions of spherical shelled particles (presenting a net charge distribution on the inner side of the shell) has been pioneered in our previous studies with emphasis on the permittivity spectra. Whereas α dispersion is related to a rather large variation exhibited by the permittivity spectrum, we report that the related decrement presented by the impedance magnitude spectrum is either extremely small, or occurs (for large cells) at very small frequencies (~mHz) explaining the lack of experimental bioimpedance data on the matter. We stress that appropriate choice of the parameters (as revealed by the microscopic model) may enable access to membrane potential as well as to other relevant parameters when investigating living cells and charged lipid vesicles. We analyse the effect on the low frequency of the permittivity and impedance spectra of: I. Parameters pertaining to cell membrane i.e. (i) membrane potential (through the amount of the net charge on the inner side of the membrane), (ii) size of the cells/vesicles, (iii) conductivity of the membrane; II. Parameters of the extra cellular medium (viscosity and conductivity). The applicability of the study has far reaching implications for basic (life) sciences (providing non-invasive access to the dynamics of relevant cell parameters) as well as for biosensing applications, e.g. assessment of cytotoxicity of a wide range of stimuli.


Sign in / Sign up

Export Citation Format

Share Document