scholarly journals Comparison of Leading Biosensor Technologies to Measure Endothelial Adhesion, Barrier Properties, and Responses to Cytokines in Real-Time

Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 62
Author(s):  
James J. W. Hucklesby ◽  
Akshata Anchan ◽  
Simon J. O’Carroll ◽  
Catherine E. Angel ◽  
E. Scott Graham

Electric Cell-substrate Impedance Sensing (ECIS), xCELLigence and cellZscope are commercially available instruments which are able to measure the impedance of cellular monolayers continuously and with high precision. The small currents used allow the label-free, real-time monitoring of the cells in a non-invasive manner. Despite the widespread use of these systems individually, direct comparisons between the systems have not been published. In order to compare the sensitivity of the instruments, the responses of the brain microvascular endothelial cell line hCMVEC to the inflammatory cytokines TNFα and IL1β were measured on all three instruments simultaneously. All three instruments showed transient decreases, followed by prolonged increases in impedance. Although xCELLigence could detect these changes, it was unable to determine which component of the barrier was affected. In contrast, ECIS and cellZscope were both able to attribute responses to particular barrier components, and ECIS had a higher sensitivity than cellZscope. Finally, as cellZscope uses Transwells, it allows access to the basolateral compartment, an important advantage of this technology. Furthermore, although xCELLigence readings are equivalent to ECIS, the reduced frequency range greatly limits interpretation. This work demonstrates that instruments must be carefully selected in order to ensure that they are appropriate for the experimental questions being asked.

Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 159
Author(s):  
James J. W. Hucklesby ◽  
Akshata Anchan ◽  
Simon J. O'Carroll ◽  
Charles P. Unsworth ◽  
E. Scott Graham ◽  
...  

Electric Cell-Substrate Impedance Sensing (ECIS), xCELLigence and cellZscope are commercially available instruments that measure the impedance of cellular monolayers. Despite widespread use of these systems individually, direct comparisons between these platforms have not been published. To compare these instruments, the responses of human brain endothelial monolayers to TNFα and IL1β were measured on all three platforms simultaneously. All instruments detected transient changes in impedance in response to the cytokines, although the response magnitude varied, with ECIS being the most sensitive. ECIS and cellZscope were also able to attribute responses to particular endothelial barrier components by modelling the multifrequency impedance data acquired by these instruments; in contrast the limited frequency xCELLigence data cannot be modelled. Consistent with its superior impedance sensing, ECIS exhibited a greater capacity than cellZscope to distinguish between subtle changes in modelled endothelial monolayer properties. The reduced resolving ability of the cellZscope platform may be due to its electrode configuration, which is necessary to allow access to the basolateral compartment, an important advantage of this instrument. Collectively, this work demonstrates that instruments must be carefully selected to ensure they are appropriate for the experimental questions being asked when assessing endothelial barrier properties.


Author(s):  
Takamasa Iwakura ◽  
Julian A Marschner ◽  
Zhi Bo Zhao ◽  
Monika Katarzyna Świderska ◽  
Hans-Joachim Anders

Abstract Electric cell-substrate impedance sensing (ECIS) is a quantitative, label-free, non-invasive analytical method allowing continuous monitoring of the behaviour of adherent cells by online recording of transcellular impedance. ECIS offers a wide range of practical applications to study cell proliferation, migration, differentiation, toxicity and monolayer barrier integrity. All of these applications are relevant for basic kidney research, e.g. on endothelial cells, tubular and glomerular epithelial cells. This review gives an overview on the fundamental principles of the ECIS technology. We name strengths and remaining hurdles for practical applications, present an ECIS array reuse protocol, and review its past, present and potential future contributions to preclinical kidney research.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Luciana Stanica ◽  
Mihnea Rosu-Hamzescu ◽  
Mihaela Gheorghiu ◽  
Miruna Stan ◽  
Loredana Antonescu ◽  
...  

Tumor hypoxia provides a dynamic environment for the cancer cells to thrive and metastasize. Evaluation of cell growth, cell-cell, and cell surface interactions in hypoxic conditions is therefore highly needed in the establishment of treatment options. Electric cell-substrate impedance sensing (ECIS) has been traditionally used in the evaluation of cellular platforms as a real-time, label-free impedance-based method to study the activities of cells grown in tissue cultures, but its application for hypoxic environments is seldom reported. We present real-time evaluation of hypoxia-induced bioeffects with a focus on hypoxic pH regulation of tumor environment. To this end, multiparametric real-time bioanalytical platform using electrical impedance spectroscopy (EIS) and human colon cancer HT-29 cells is advanced. A time series of EIS data enables monitoring with high temporal resolution the alterations occurring within the cell layer, especially at the cell-substrate level. We reveal the dynamic changes of cellular processes during hypoxic conditions and in response to application of acetazolamide (AZA), a carbonic anhydrase inhibitor. Optical evaluation and pH assessment complemented the electrical analysis towards establishing a pattern of cellular changes. The proposed bioanalytical platform indicates wide applicability towards evaluation of bioeffects of hypoxia at cellular level.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Matthew R. Pennington ◽  
Gerlinde R. Van de Walle

ABSTRACT Alphaherpesviruses, including those that commonly infect humans, such as HSV-1 and HSV-2, typically infect and cause cellular damage to epithelial cells at mucosal surfaces, leading to disease. The development of novel technologies to study the cellular responses to infection may allow a more complete understanding of virus replication and the creation of novel antiviral therapies. This study demonstrates the use of ECIS to study various aspects of herpesvirus biology, with a specific focus on changes in cellular morphology as a result of infection. We conclude that ECIS represents a valuable new tool with which to study alphaherpesvirus infections in real time and in an objective and reproducible manner. Electric cell-substrate impedance sensing (ECIS) measures changes in an electrical circuit formed in a culture dish. As cells grow over a gold electrode, they block the flow of electricity and this is read as an increase in electrical impedance in the circuit. ECIS has previously been used in a variety of applications to study cell growth, migration, and behavior in response to stimuli in real time and without the need for cellular labels. Here, we demonstrate that ECIS is also a valuable tool with which to study infection by alphaherpesviruses. To this end, we used ECIS to study the kinetics of cells infected with felid herpesvirus type 1 (FHV-1), a close relative of the human alphaherpesviruses herpes simplex virus 1 (HSV-1) and HSV-2, and compared the results to those obtained with conventional infectivity assays. First, we demonstrated that ECIS can easily distinguish between wells of cells infected with different amounts of FHV-1 and provides information about the cellular response to infection. Second, we found ECIS useful in identifying differences between the replication kinetics of recombinant DsRed Express2-labeled FHV-1, created via CRISPR/Cas9 genome engineering, and wild-type FHV-1. Finally, we demonstrated that ECIS can accurately determine the half-maximal effective concentration of antivirals. Collectively, our data show that ECIS, in conjunction with current methodologies, is a powerful tool that can be used to monitor viral growth and study the cellular response to alphaherpesvirus infection. IMPORTANCE Alphaherpesviruses, including those that commonly infect humans, such as HSV-1 and HSV-2, typically infect and cause cellular damage to epithelial cells at mucosal surfaces, leading to disease. The development of novel technologies to study the cellular responses to infection may allow a more complete understanding of virus replication and the creation of novel antiviral therapies. This study demonstrates the use of ECIS to study various aspects of herpesvirus biology, with a specific focus on changes in cellular morphology as a result of infection. We conclude that ECIS represents a valuable new tool with which to study alphaherpesvirus infections in real time and in an objective and reproducible manner.


The Analyst ◽  
2011 ◽  
Vol 136 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Jongin Hong ◽  
Karthikeyan Kandasamy ◽  
Mohana Marimuthu ◽  
Cheol Soo Choi ◽  
Sanghyo Kim

2015 ◽  
Vol 71 ◽  
pp. 445-455 ◽  
Author(s):  
W. Gamal ◽  
S. Borooah ◽  
S. Smith ◽  
I. Underwood ◽  
V. Srsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document