scholarly journals Introduction of mutant p53 into a wild-type p53-expressing glioma cell line confers sensitivity to Ad-p53-induced apoptosis

2001 ◽  
Vol 3 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Julie A. Cerrato ◽  
W.K. Alfred Yung ◽  
Ta-Jen Liu
1998 ◽  
Vol 89 (1) ◽  
pp. 125-132 ◽  
Author(s):  
Frederick F. Lang ◽  
W. K. Alfred Yung ◽  
Uma Raju ◽  
Floralyn Libunao ◽  
Nicholas H. A. Terry ◽  
...  

Object. The authors sought to determine whether combining p53 gene transfer with radiation therapy would enhance the therapeutic killing of p53 wild-type glioma cells. It has been shown in several reports that adenovirus-mediated delivery of the p53 gene into p53 mutant gliomas results in dramatic apoptosis, but has little effect on gliomas containing wild-type p53 alleles. Therefore, p53 gene therapy alone may not be a clinically effective treatment for gliomas because most gliomas are composed of both p53 mutant and wild-type cell populations. One potential approach to overcome this problem is to exploit the role p53 plays as an important determinant in the cellular response to ionizing radiation. Methods. In vitro experiments were performed using the glioma cell line U87MG, which contains wild-type p53. Comparisons were made to the glioma cell line U251MG, which contains a mutant p53 allele. Monolayer cultures were infected with an adenovirus containing wild-type p53 (Ad5CMV-p53), a control vector (dl312), or Dulbecco's modified Eagle's medium (DMEM). Two days later, cultures were irradiated and colony-forming efficiency was determined. Transfection with p53 had only a minor effect on the plating efficiency of nonirradiated U87MG cells, reducing the plating efficiency from 0.23 ± 0.01 in DMEM to 0.22 ± 0.04 after addition of Ad5CMV-p53. However, p53 transfection significantly enhanced the radiosensitivity of these cells. The dose enhancement factor at a surviving fraction of 0.10 was 1.5, and the surviving fraction at 2 Gy was reduced from 0.61 in untransfected controls to 0.38 in p53-transfected cells. Transfection of the viral vector control (dl312) had no effect on U87MG radiosensitivity. In comparison, transfection of Ad5CMV-p53 into the p53 mutant cell line U251MG resulted in a significant decrease in the surviving fraction of these cells compared with controls, and no radiosensitization was detected. To determine whether Ad5CMV-p53—mediated radiosensitization of U87MG cells involved an increase in the propensity of these cells to undergo apoptosis, flow cytometric analysis of terminal deoxynucleotidyl transferase-mediated biotinylated-deoxyuridinetriphosphate nick-end labeling—stained cells was performed. Whereas the amount of radiation-induced apoptosis in uninfected and dl312-infected control cells was relatively small (2.1 ± 0.05% and 3.7 ± 0.5%, respectively), the combination of Ad5CMV-p53 infection and radiation treatment significantly increased the apoptotic frequency (18.6 ± 1.4%). To determine whether infection with Ad5CMV-p53 resulted in increased expression of functional exogenous p53 protein, Western blot analysis of p53 was performed on U87MG cells that were exposed to 9 Gy of radiation 2 days after exposure to Ad5CMV-p53, dl312, or DMEM. Infection with Ad5CMV-p53 alone increased p53 levels compared with DMEM- or dl312-treated cells. Irradiation of Ad5CMV-p53—infected cells resulted in a further increase in p53 that reached a maximum at 2 hours postirradiation. To determine whether exogenous p53 provided by Ad5CMV-p53 had transactivating activity, U87MG cells were treated as described earlier and p21 messenger RNA levels were determined. Infection of U87MG cells with Ad5CMV-p53 only resulted in an increase in p21 compared with DMEM- and dl312-treated cells. Irradiation of Ad5CMV-p53—infected cells resulted in an additional time-dependent increase in p21 expression. Conclusions. These data indicate that adenovirus-mediated delivery of p53 may enhance the radioresponse of brain tumor cells containing wild-type p53 and that this radiosensitization may involve converting from a clonogenic to the more sensitive apoptotic form of cell death. Although the mechanism underlying this enhanced apoptotic susceptibility is unknown, the Ad5CMV-p53—infected cells have a higher level of p53 protein, which increases further after irradiation, and this exogenous p53 is transcriptionally active. Thus, it is possible that the combination of Ad5CMV-p53 infection and radiation treatment increases p53 protein to a level that is sufficient to overcome at least partially the block in apoptosis existing in U87MG cells.


2003 ◽  
Vol 51 (4) ◽  
pp. 271-283 ◽  
Author(s):  
Fumiyuki Yamasaki ◽  
Seiji Hama ◽  
Hiroyuki Yoshioka ◽  
Yoshinori Kajiwara ◽  
Kaita Yahara ◽  
...  

2009 ◽  
Vol 29 (1) ◽  
pp. 20-24 ◽  
Author(s):  
Kentaro Yamashita ◽  
Shigeru Nakashima ◽  
Fukka You ◽  
Shin-ichiro Hayashi ◽  
Toru Iwama

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2596-2596
Author(s):  
Ismael Samudio ◽  
Martin Dietrich ◽  
Paul Corn ◽  
Dajun Yang ◽  
Gautam Borthakur

Abstract Although TP53 mutations are rare in acute myeloid leukemia (AML), inactivation of wild-type p53 protein frequently occurs through overexpression of its negative regulator MDM2 (murine double minute 2). We investigated the effects of MI-63, a small molecule that activates p53 by inhibition of MDM2-p53 interaction [ Ki value of 3 nM (J Med Chem.2006;49(12):3432–5)] in AML cell lines. Treatment with MI-63 triggered apoptosis (evidenced by loss of membrane potential and externalization of phosphatidylserine) in AML cell lines with wild-type p53 (OCI-AML-3 and MOLM13) in a time and concentration-dependent manner (IC50 at 72 hrs.= 2.5 μM for OCI-AML-3 and 1 μM for MOLM-13), while a p53-null AML cell line (HL-60) was resistant (IC50 not reached at 10 μM). Moreover, knockdown of p53 in OCI-AML3 cells rendered this cell line resistant to MI-63 induced apoptosis while control vector infected OCI-AML-3 cells remained as sensitive to MI-63 similar to the parental cells. Mechanistic studies showed that MI-63 blocks G1/S phase transition in AML cells with wild-type p53 resulting in accumulation of cells in G1 phase (percentage cells inG1 phase at 24 hrs. = 88.66% vs 43.49% in cultures with DMSO control) while MI-61, a skeletally related but inactive control compound failed to do so (41.63%). Treatment with MI-63 increased cellular levels of p53 and p53 dependent proteins in OCI-AML-3 cells that include p21 and BH3-only pro-apoptotic protein Puma and pro-apoptotic multi-domain Bcl-2 family member Bax. Additionally, MI-63 induced a profound decrease in the levels of MDM4, an MDM2 homolog that has been reported to mediate resistance to the effects of nutlin-3a, suggesting that MI-63 may offer a therapeutic advantage in cells expressing high levels of MDM4. Finally, supporting the concept that increased levels of p53 modulate the apoptotic rheostat both directly, by behaving as a BH3-only protein, and indirectly by increasing the levels of sensitizer BH3-only proteins, MI-63 potently synergized with AT-101, an orally available pan inhibitor of Bcl-2, Bcl-xL and Mcl-1 (currently being evaluated as an antitumor agent in Phase I/II trials by Ascenta Therapeutics), to induce mitochondrial dysfunction and apoptosis in OCI-AML-3 cells (average combination index = 0.055±0.019). Taken together our results support preclinical evaluation of novel small molecule MI-63 alone and in combination with Bcl-2 inhibitors for the therapy of AML. The studies in primary AML samples are ongoing. Fig.1: MI-63 Induced Apoptosis Requires Intact p53 Fig.1:. MI-63 Induced Apoptosis Requires Intact p53 Fig.2: Efect of MI-63 on p53 and Related Proteins (comparison with N3a, a known MDM2 inhibitor included) Fig.2:. Efect of MI-63 on p53 and Related Proteins (comparison with N3a, a known MDM2 inhibitor included)


2013 ◽  
Vol 25 (3) ◽  
pp. 286-294 ◽  
Author(s):  
Pichaya Jumnongprakhon ◽  
Piyarat Govitrapong ◽  
Chainarong Tocharus ◽  
Wanida Tungkum ◽  
Jiraporn Tocharus

1998 ◽  
Vol 15 (2) ◽  
pp. 77-82 ◽  
Author(s):  
Yasuhiro Hamada ◽  
Masahiro Mizoguchi ◽  
Satoshi O. Suzuki ◽  
Toru Iwaki

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3822-3822
Author(s):  
Jo Ishizawa ◽  
Kensuke Kojima ◽  
Archana Dilip ◽  
Vivian R Ruvolo ◽  
Bing Z Carter ◽  
...  

Abstract ONC201 (TIC10) is a novel small molecule that induces TRAIL-dependent apoptosis in various cancer cell types and is under development to enter a first-in-man study in advanced cancer patients .It was identified in a screen for small molecules capable of up-regulating endogenous TRAIL gene transcription in a p53-independent manner (Allen JE et al, Sci Transl Med., 2013). ONC201 triggers FOXO3a activation through dual inhibition of ERK and AKT, which transcriptionally upregulates TRAIL and TNFRSF10B (TRAIL-R2/DR5) in solid tumors. Because PI3K/AKT and MEK/ERK activation have been shown to be major contributors to drug resistance, ONC201 is potentially promising since it not only promotes TRAIL activation, but also upregulates its pro-apoptotic receptor DR5. Here we report the anti-lymphoma effects of ONC201 in MCL, a presently incurable disease. We treated three human MCL cell lines with wild-type p53 (Z-138, JVM-2, and Granta-519) and two similar lines with mutant p53 (MINO and Jeko-1) with ONC201. A 72-hour ONC201 treatment induced apoptosis in all MCL cell lines. Surprisingly, the p53 mutant MINO and Jeko-1 cells were more susceptible in apoptosis assays to ONC201 than cells with wild-type p53 (Fig.1) The effective concentrations inducing cell killing (as measured by annexin V positivity) in 50%/75% of the cells in the Z-138, JVM-2, MINO, Jeko-1, and Granta-519 cells were 9.9/>10, >10/>10, 2.6/5.2, 2.7/4.6 and >10/ >10 micromolar, respectively. We also treated five primary human MCL samples (three with wild-type p53 and two with mutant p53), and found that one of the two mutant p53 samples was highly sensitive to ONC201 as were the three samples with wild-type p53. One mutant p53 sample that was less sensitive to ONC201, was also resistant to Nutlin-3a and Ibrutinib suggesting an extremely drug-resistant phenotype. Real-time PCR analysis revealed that both DR5 and TRAIL mRNAs were transcriptionally upregulated in the primary MCL samples (a relative ratio of 7.25 compared to 3.13 in controls) after 72-hour treatment with ONC201. To determine the significance of p53 functional status in ONC201-induced apoptosis, p53 wild-type Z-138 and JVM-2 cells were stably transduced with lentivirus encoding either negative control shRNA or p53-specific shRNA and were exposed to ONC201 and results demonstrated complete p53-independence. Normal human bone marrow cells and mesenchymal stem cells were completely resistant to the cytotoxic effects of ONC201, which illustrated this agent's low toxicity against normal tissues. In order to examine the role of p53 activation in ONC201-induced apoptosis in MCL cells, we combined ONC201 with the MDM2 inhibitor Nutlin-3a. The combination cytotoxic effects of this combination were synergistic in p53 wild-type Z-138 and JVM-2 cells (combination index 0.87 and 0.63, respectively). Similar synergistic effects of ONC201 combined with the BTK inhibitor Ibrutinib were observed in Z-138 and MINO cells (combination index 0.63 and 0.61, respectively). This combination also triggered synergistic apoptotic effects in two primary MCL samples with combination indexes of 0.0011 and 0.073, respectively. Conclusion ONC201 induces p53-independent apoptosis in MCL cells, and may have significant clinical impact by targeting both p53 wild type and p53 mutant drug-resistant MCL cells. ONC201 exerts synergistic effects with MDM2 and BTK inhibitors that may be explored clinically. Disclosures: Allen: Drug Company: Employment. Andreeff:Oncoceutics: SAB Other.


Sign in / Sign up

Export Citation Format

Share Document