scholarly journals IMG-22. A DEEP LEARNING MODEL FOR AUTOMATIC POSTERIOR FOSSA PEDIATRIC BRAIN TUMOR SEGMENTATION: A MULTI-INSTITUTIONAL STUDY

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii359-iii359
Author(s):  
Lydia Tam ◽  
Edward Lee ◽  
Michelle Han ◽  
Jason Wright ◽  
Leo Chen ◽  
...  

Abstract BACKGROUND Brain tumors are the most common solid malignancies in childhood, many of which develop in the posterior fossa (PF). Manual tumor measurements are frequently required to optimize registration into surgical navigation systems or for surveillance of nonresectable tumors after therapy. With recent advances in artificial intelligence (AI), automated MRI-based tumor segmentation is now feasible without requiring manual measurements. Our goal was to create a deep learning model for automated PF tumor segmentation that can register into navigation systems and provide volume output. METHODS 720 pre-surgical MRI scans from five pediatric centers were divided into training, validation, and testing datasets. The study cohort comprised of four PF tumor types: medulloblastoma, diffuse midline glioma, ependymoma, and brainstem or cerebellar pilocytic astrocytoma. Manual segmentation of the tumors by an attending neuroradiologist served as “ground truth” labels for model training and evaluation. We used 2D Unet, an encoder-decoder convolutional neural network architecture, with a pre-trained ResNet50 encoder. We assessed ventricle segmentation accuracy on a held-out test set using Dice similarity coefficient (0–1) and compared ventricular volume calculation between manual and model-derived segmentations using linear regression. RESULTS Compared to the ground truth expert human segmentation, overall Dice score for model performance accuracy was 0.83 for automatic delineation of the 4 tumor types. CONCLUSIONS In this multi-institutional study, we present a deep learning algorithm that automatically delineates PF tumors and outputs volumetric information. Our results demonstrate applied AI that is clinically applicable, potentially augmenting radiologists, neuro-oncologists, and neurosurgeons for tumor evaluation, surveillance, and surgical planning.

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Yannan Yu ◽  
Soren Christensen ◽  
Yuan Xie ◽  
Enhao Gong ◽  
Maarten G Lansberg ◽  
...  

Objective: Ischemic core prediction from CT perfusion (CTP) remains inaccurate compared with gold standard diffusion-weighted imaging (DWI). We evaluated if a deep learning model to predict the DWI lesion from MR perfusion (MRP) could facilitate ischemic core prediction on CTP. Method: Using the multi-center CRISP cohort of acute ischemic stroke patient with CTP before thrombectomy, we included patients with major reperfusion (TICI score≥2b), adequate image quality, and follow-up MRI at 3-7 days. Perfusion parameters including Tmax, mean transient time, cerebral blood flow (CBF), and cerebral blood volume were reconstructed by RAPID software. Core lab experts outlined the stroke lesion on the follow-up MRI. A previously trained MRI model in a separate group of patients was used as a starting point, which used MRP parameters as input and RAPID ischemic core on DWI as ground truth. We fine-tuned this model, using CTP parameters as input, and follow-up MRI as ground truth. Another model was also trained from scratch with only CTP data. 5-fold cross validation was used. Performance of the models was compared with ischemic core (rCBF≤30%) from RAPID software to identify the presence of a large infarct (volume>70 or >100ml). Results: 94 patients in the CRISP trial met the inclusion criteria (mean age 67±15 years, 52% male, median baseline NIHSS 18, median 90-day mRS 2). Without fine-tuning, the MRI model had an agreement of 73% in infarct >70ml, and 69% in >100ml; the MRI model fine-tuned on CT improved the agreement to 77% and 73%; The CT model trained from scratch had agreements of 73% and 71%; All of the deep learning models outperformed the rCBF segmentation from RAPID, which had agreements of 51% and 64%. See Table and figure. Conclusions: It is feasible to apply MRP-based deep learning model to CT. Fine-tuning with CTP data further improves the predictions. All deep learning models predict the stroke lesion after major recanalization better than thresholding approaches based on rCBF.


2020 ◽  
Vol 39 (10) ◽  
pp. 734-741
Author(s):  
Sébastien Guillon ◽  
Frédéric Joncour ◽  
Pierre-Emmanuel Barrallon ◽  
Laurent Castanié

We propose new metrics to measure the performance of a deep learning model applied to seismic interpretation tasks such as fault and horizon extraction. Faults and horizons are thin geologic boundaries (1 pixel thick on the image) for which a small prediction error could lead to inappropriately large variations in common metrics (precision, recall, and intersection over union). Through two examples, we show how classical metrics could fail to indicate the true quality of fault or horizon extraction. Measuring the accuracy of reconstruction of thin objects or boundaries requires introducing a tolerance distance between ground truth and prediction images to manage the uncertainties inherent in their delineation. We therefore adapt our metrics by introducing a tolerance function and illustrate their ability to manage uncertainties in seismic interpretation. We compare classical and new metrics through different examples and demonstrate the robustness of our metrics. Finally, we show on a 3D West African data set how our metrics are used to tune an optimal deep learning model.


2018 ◽  
Vol 24 (5) ◽  
pp. 497-502 ◽  
Author(s):  
Dipendra Jha ◽  
Saransh Singh ◽  
Reda Al-Bahrani ◽  
Wei-keng Liao ◽  
Alok Choudhary ◽  
...  

AbstractWe present a deep learning approach to the indexing of electron backscatter diffraction (EBSD) patterns. We design and implement a deep convolutional neural network architecture to predict crystal orientation from the EBSD patterns. We design a differentiable approximation to the disorientation function between the predicted crystal orientation and the ground truth; the deep learning model optimizes for the mean disorientation error between the predicted crystal orientation and the ground truth using stochastic gradient descent. The deep learning model is trained using 374,852 EBSD patterns of polycrystalline nickel from simulation and evaluated using 1,000 experimental EBSD patterns of polycrystalline nickel. The deep learning model results in a mean disorientation error of 0.548° compared to 0.652° using dictionary based indexing.


2020 ◽  
Vol 12 (2) ◽  
pp. 275 ◽  
Author(s):  
Zhengxia Zou ◽  
Tianyang Shi ◽  
Wenyuan Li ◽  
Zhou Zhang ◽  
Zhenwei Shi

Despite the recent progress in deep learning and remote sensing image interpretation, the adaption of a deep learning model between different sources of remote sensing data still remains a challenge. This paper investigates an interesting question: do synthetic data generalize well for remote sensing image applications? To answer this question, we take the building segmentation as an example by training a deep learning model on the city map of a well-known video game “Grand Theft Auto V” and then adapting the model to real-world remote sensing images. We propose a generative adversarial training based segmentation framework to improve the adaptability of the segmentation model. Our model consists of a CycleGAN model and a ResNet based segmentation network, where the former one is a well-known image-to-image translation framework which learns a mapping of the image from the game domain to the remote sensing domain; and the latter one learns to predict pixel-wise building masks based on the transformed data. All models in our method can be trained in an end-to-end fashion. The segmentation model can be trained without using any additional ground truth reference of the real-world images. Experimental results on a public building segmentation dataset suggest the effectiveness of our adaptation method. Our method shows superiority over other state-of-the-art semantic segmentation methods, for example, Deeplab-v3 and UNet. Another advantage of our method is that by introducing semantic information to the image-to-image translation framework, the image style conversion can be further improved.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7424
Author(s):  
Shuang-Jian Jiao ◽  
Lin-Yao Liu ◽  
Qian Liu

With the rapid spreading of in-vehicle information systems such as smartphones, navigation systems, and radios, the number of traffic accidents caused by driver distractions shows an increasing trend. Timely identification and warning are deemed to be crucial for distracted driving and the establishment of driver assistance systems is of great value. However, almost all research on the recognition of the driver’s distracted actions using computer vision methods neglected the importance of temporal information for action recognition. This paper proposes a hybrid deep learning model for recognizing the actions of distracted drivers. Specifically, we used OpenPose to obtain skeleton information of the human body and then constructed the vector angle and modulus ratio of the human body structure as features to describe the driver’s actions, thereby realizing the fusion of deep network features and artificial features, which improve the information density of spatial features. The K-means clustering algorithm was used to preselect the original frames, and the method of inter-frame comparison was used to obtain the final keyframe sequence by comparing the Euclidean distance between manually constructed vectors representing frames and the vector representing the cluster center. Finally, we constructed a two-layer long short-term memory neural network to obtain more effective spatiotemporal features, and one softmax layer to identify the distracted driver’s action. The experimental results based on the collected dataset prove the effectiveness of this framework, and it can provide a theoretical basis for the establishment of vehicle distraction warning systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Kumazu ◽  
Nao Kobayashi ◽  
Naoki Kitamura ◽  
Elleuch Rayan ◽  
Paul Neculoiu ◽  
...  

AbstractThe prediction of anatomical structures within the surgical field by artificial intelligence (AI) is expected to support surgeons’ experience and cognitive skills. We aimed to develop a deep-learning model to automatically segment loose connective tissue fibers (LCTFs) that define a safe dissection plane. The annotation was performed on video frames capturing a robot-assisted gastrectomy performed by trained surgeons. A deep-learning model based on U-net was developed to output segmentation results. Twenty randomly sampled frames were provided to evaluate model performance by comparing Recall and F1/Dice scores with a ground truth and with a two-item questionnaire on sensitivity and misrecognition that was completed by 20 surgeons. The model produced high Recall scores (mean 0.606, maximum 0.861). Mean F1/Dice scores reached 0.549 (range 0.335–0.691), showing acceptable spatial overlap of the objects. Surgeon evaluators gave a mean sensitivity score of 3.52 (with 88.0% assigning the highest score of 4; range 2.45–3.95). The mean misrecognition score was a low 0.14 (range 0–0.7), indicating very few acknowledged over-detection failures. Thus, AI can be trained to predict fine, difficult-to-discern anatomical structures at a level convincing to expert surgeons. This technology may help reduce adverse events by determining safe dissection planes.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2369
Author(s):  
Ahmed Mohammed ◽  
Johannes Kvam ◽  
Jens T. Thielemann ◽  
Karl H. Haugholt ◽  
Petter Risholm

Manipulation tasks on subsea instalments require extremely precise detection and localization of objects of interest. This problem is referred to as “pose estimation”. In this work, we present a framework for detecting and predicting 6DoF pose for relevant objects (fish-tail, gauges, and valves) on a subsea panel under varying water turbidity. A deep learning model that takes 3D vision data as an input is developed, providing a more robust 6D pose estimate. Compared to the 2D vision deep learning model, the proposed method reduces rotation and translation prediction error by (−Δ0.39∘) and translation (−Δ6.5 mm), respectively, in high turbid waters. The proposed approach is able to provide object detection as well as 6D pose estimation with an average precision of 91%. The 6D pose estimation results show 2.59∘ and 6.49 cm total average deviation in rotation and translation as compared to the ground truth data on varying unseen turbidity levels. Furthermore, our approach runs at over 16 frames per second and does not require pose refinement steps. Finally, to facilitate the training of such model we also collected and automatically annotated a new underwater 6D pose estimation dataset spanning seven levels of turbidity.


Sign in / Sign up

Export Citation Format

Share Document