scholarly journals HGG-02. NEUROPHYSIOLOGICAL SMALL MOLECULE SCREEN TO TARGET NEURON-GLIOMA INTERACTIONS IN PEDIATRIC HIGH-GRADE GLIOMAS

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i17-i17
Author(s):  
David Rogawski ◽  
Sara Mulinyawe ◽  
Craig Thomas ◽  
Michelle Monje

Abstract Neurons stimulate glioma growth via synaptic and paracrine signaling mechanisms. We recently demonstrated that neurons form AMPA receptor-dependent synapses with glioma cells, and that neuronal activity also induces potassium-evoked currents that are amplified by gap junctions coupling glioma cells. However, our understanding of the neurotransmitters, receptors, and ion channels participating in neuron-glioma signaling remains incomplete. We have recently developed a high-throughput neuron-glioma co-culture strategy to screen small molecules for agents that may disrupt neuron-glioma signaling. Glioma cell proliferation is increased tenfold when cultured together with neurons; this robust biological effect can be probed in a targeted screen of compounds influencing neurotransmitter receptors and ion channels. The neurophysiological small molecule library used was curated to include approved anti-epileptics, neuroleptics, and antidepressants, as well as a variety of other compounds acting on different neurotransmitter types and ion channels. Hits from the primary screen were run through a counter-screen using glioma cells grown alone without neurons, to identify compounds that specifically affect neuron-glioma interactions. Correlation of the screening results with drug mechanisms of action will allow us to map out the key neurotransmitter pathways regulating glioma growth, which can be further validated using genetic and in vivo experiments. Drugs identified in this glioma neuroscience screen may be readily translated into much-needed therapeutics for children with high-grade glioma.

2022 ◽  
Author(s):  
Zhiyuan Sun ◽  
Yufu Zhu ◽  
Xia Feng ◽  
Xiaoyun Liu ◽  
Kunlin Zhou ◽  
...  

Abstract H3.3K27M is a newly identified molecular pathology marker in glioma and is especially correlated with the malignancy of diffuse intrinsic pontine glioma (DIPG). In recent years, accumulating research has revealed that other types of glioma also contain the H3.3K27M mutation. However, the role of H3.3K27M in high-grade adult glioma, which is the most malignant glioma, has not been investigated. In this study, we focused on exploring the expression and function of H3.3K27M in high-grade adult glioma patients. We found that H3.3K27M is partly highly expressed in high-grade glioma tissues. Then, we introduced H3.3K27M into H3.3 wild-type glioma cells, U87 cells and LN229 cells. We found that H3.3K27M did not regulate the growth of glioma in vitro and in vivo; however, the survival of mice with transplanted tumors was significantly reduced. Further investigation revealed that H3.3K27M expression mainly promoted the migration and invasion of glioma cells. Moreover, we certified that H3.3K27M overexpression enhanced the protein levels of ꞵ-catenin and p-ꞵ-catenin, the protein and mRNA levels of ubiquitin-specific protease 1 (USP1), and the protein level of enhancer of zeste homolog 2 (EZH2). Importantly, the ꞵ-catenin inhibitor XAV-939 significantly attenuated the upregulation of the aforementioned proteins. Overall, the H3.3K27M mutation is present in a certain proportion of high-grade glioma patients and facilitates a poor prognosis by promoting the metastasis of glioma by regulating the ꞵ-catenin/USP1/EZH2 pathway.


2020 ◽  
Author(s):  
Cristiana Barone ◽  
Mariachiara Buccarelli ◽  
Francesco Alessandrini ◽  
Miriam Pagin ◽  
Laura Rigoldi ◽  
...  

AbstractCancer stem cells (CSC) are essential for tumorigenesis. The transcription factor Sox2 is overexpressed in brain tumors. In gliomas, Sox2 is essential to maintain CSC. In mouse high-grade glioma pHGG, Sox2 deletion causes cell proliferation arrest and inability to reform tumors in vivo; 134 genes are significantly derepressed. To identify genes mediating the effects of Sox2 deletion, we overexpressed into pHGG cells nine among the most derepressed genes, and identified four genes, Cdkn2b, Ebf1, Zfp423 and Hey2, that strongly reduced cell proliferation in vitro and brain tumorigenesis in vivo. CRISPR/Cas9 mutagenesis, or pharmacological inactivation, of each of these genes, individually, showed that their activity is essential for the proliferation arrest caused by Sox2 deletion. These Sox2-inhibited antioncogenes also inhibited clonogenicity in primary human glioblastoma-derived cancer stem-like cell lines. These experiments identify critical anti-oncogenic factors whose inhibition by Sox2 is involved in CSC maintenance, defining new potential therapeutic targets for gliomas.Table of Contents ImageMain PointsSox2 maintains glioma tumorigenicity by repressing the antioncogenic activity of a regulatory network involving the Ebf1, Hey2, Cdkn2b and Zfp423 genes.Mutation of these genes prevents the cell proliferation arrest of Sox2-deleted glioma cells.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i18-i18
Author(s):  
Shawn Gillespie ◽  
Yoon Kim ◽  
Anna Geraghty ◽  
Pamelyn Woo ◽  
Michelle Monje

Abstract High-grade gliomas, including diffuse intrinsic pontine glioma (DIPG), are a lethal group of cancers whose progression is strongly regulated by neuronal activity {Venkatesh 2015}{Venkatesh 2017}{Venkatesh 2019}. One way in which glioma cells sense neuronal activity is via interaction with the ectodomain of post-synaptic adhesion protein neuroligin-3 (NLGN3), which is cleaved and released into the tumor microenvironment (TME) by the sheddase ADAM10. This interaction drives glioma growth, but the relevant binding partner of shed NLGN3 (sNLGN3) on glioma cells is currently unknown. Here, we report that sNLGN3 binds to chondroitin sulfate proteoglycan 4 (CSPG4), in turn inducing regulated intramembrane proteolysis (RIP) of CSPG4, and initiating a signaling cascade within DIPG cells to promote tumor growth. CSPG4 RIP involves activity-regulated ectodomain shedding by ADAM10 and subsequent gamma secretase-mediated release of the intracellular domain in healthy oligodendroglial precursor cells (OPCs), putative cells of origin for several forms of high-grade glioma {Sakry 2014}{Nayak 2018}. Incubation of high-grade glioma cells or healthy OPCs with recombinant NLGN3 is sufficient to augment ADAM10-mediated ectodomain release of CSPG4 and subsequent gamma secretase-mediated cleavage of the CSPG4 intracellular domain (ICD). Pre-treatment of glioma cells or OPCs with an ADAM10 inhibitor entirely blocks NLGN3-induced CSPG4 shedding. Acute depletion of CSPG4 via CRISPR gene editing renders glioma cells insensitive to the growth-promoting effects of NLGN3 application in vitro. We are now performing experiments to better discern how the CSPG4 ICD regulates signaling consequences downstream of sNLGN3 binding. In addition, we are using surface plasmon resonance to investigate whether the shed ectodomains of NLGN3 and CSPG4 remain in complex or only transiently interact. Altogether, our data form a critical missing link in understanding how glioma cells sense, translate and respond to neuronal activity in the TME and identify a new therapeutic target to disrupt neuron-glioma interactions.


2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii76.3-iii76
Author(s):  
Adam Green ◽  
Patrick Flannery ◽  
John DeSisto ◽  
Madeleine Lemieux ◽  
Shak Ramkissoon ◽  
...  

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i17-i18
Author(s):  
Tara Barron ◽  
Vilina Mehta ◽  
Pamelyn Woo ◽  
Michelle Monje

Abstract Pediatric high-grade gliomas, including diffuse intrinsic pontine glioma (DIPG), are the leading cause of brain cancer-related death in children. While enormous progress has been made in recent years for many forms of cancer, high-grade gliomas remain seemingly intractable, indicating that fundamental aspects of glioma growth are not yet sufficiently understood. Neuronal activity drives glioma growth both through paracrine signaling and through direct neuron-to-glioma synapses. Recently glutamatergic, AMPA receptor-dependent synapses were discovered between microenvironmental neurons and malignant glioma cells. The depolarizing current that results from synaptic and other forms of electrical neuron-glioma signaling promotes pediatric high-grade glioma proliferation and regulates growth. Neuron-glioma cell synapses mediated by other neurotransmitters remain largely unexplored, though glioma cells express genes encoding neurotransmitter receptors such as GABAA receptor subunits. Using whole-cell patch clamp electrophysiology in patient-derived DIPG xenografts, we have identified functional GABAergic neuron-to-glioma synapses mediated by GABAA receptors. GABAergic input has a depolarizing effect on glioma cells, but the magnitude of depolarization is heterogeneous between high-grade glioma subtypes and between patient-derived DIPG xenograft models. As membrane depolarization increases glioma proliferation, depolarizing GABAergic inputs to glioma cells could promote DIPG progression. Drugs that stimulate GABA signaling, such as benzodiazepines, are often given to pediatric glioma patients to treat nausea, seizures or anxiety. In patient-derived DIPG xenograftn models, lorazepam, a benzodiazepine that increases GABAA receptor conductance, increases glioma growth. Conversely, levetiracetam, an anti-epileptic drug that reduces synaptic transmission including at GABAergic neuron-glioma synapses, reduces glioma proliferation in patient-derived DIPG xenografts. This emerging understanding of brain cancer neurophysiology reveals new therapeutic targets and highlights commonly used drugs about which more study is required in this disease context.


Planta Medica ◽  
2018 ◽  
Vol 84 (11) ◽  
pp. 786-794
Author(s):  
Weiyun Chai ◽  
Lu Chen ◽  
Xiao-Yuan Lian ◽  
Zhizhen Zhang

AbstractTripolinolate A as a new bioactive phenolic ester was previously isolated from a halophyte of Tripolium pannonicum. However, the in vitro and in vivo anti-glioma effects and mechanism of tripolinolate A have not been investigated. This study has demonstrated that (1) tripolinolate A inhibited the proliferation of different glioma cells with IC50 values of 7.97 to 14.02 µM and had a significant inhibitory effect on the glioma growth in U87MG xenograft nude mice, (2) tripolinolate A induced apoptosis in glioma cells by downregulating the expressions of antiapoptotic proteins and arrested glioma cell cycle at the G2/M phase by reducing the expression levels of cell cycle regulators, and (3) tripolinolate A also remarkably reduced the expression levels of several glioma metabolic enzymes and transcription factors. All data together suggested that tripolinolate A had significant in vitro and in vivo anti-glioma effects and the regulation of multiple tumor-related regulators and transcription factors might be responsible for the activities of tripolinolate A against glioma.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Yisel Rivera-Molina ◽  
Hong Jiang ◽  
Juan Fueyo ◽  
Teresa Nguyen ◽  
Dong Ho Shin ◽  
...  

Abstract Background Viroimmunotherapy is evolving as a strong alternative for the standard treatment of malignant gliomas. Promising results from a recent clinical trial testing the anticancer effect of Delta-24-RGD in patients with glioblastoma suggested the induction of antitumoral immunity after viral administration. To further enhance the anti-glioma immune effect, we have armed Delta-24-RGD with the costimulatory ligand GITRL (Delta-24-GREAT [Glucocorticoid Receptor Enhanced Activity of T cells]). Methods We tested the infectivity and replication of Delta-24-GREAT, and the expression of ectopic GITRL in human and murine glioma cell lines. In vivo experiments involved the intracranial implantation of glioma cells into an immunocompetent model to study the anticancer effect, and rechallenging experiments to study long-term protection. Phenotypic and functional characterization of lymphocyte populations were performed by FACS and ELISA for Th1 cytokines expression, respectively. Results Our results showed that Delta-24-GREAT infects and induces the expression of GITRL. Delta-24-GREAT prolonged the survival of glioma-bearing immunocompetent mice and resulted in both anti-viral and anti-glioma immune responses, including increased frequency of central memory CD8+ T cells. Rechallenging the surviving mice with a second implantation of glioma cells did not lead to tumor growth; however, the surviving mice developed lethal tumors when B16/F10 melanoma cells were implanted intracranially, strongly indicating that the immune response was specific for glioma antigens. Conclusions GITRL-armed Delta-24-RGD treatment results in an antigen-restricted antitumor memory, an enhanced anti-glioma effect, and the generation of central immune memory. Our results strongly indicate that this strategy represents a vertical advance in virotherapy designed to treat patients with malignant brain tumors.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi192-vi193
Author(s):  
Michael Chen ◽  
Kelly Bush ◽  
Nichole Lewis ◽  
Vanessa Cervantes ◽  
Paul Knoepfler

Abstract Alterations in histone H3.3 are common driver mutations in high-grade pediatric gliomas, but the central oncogenic mechanisms remain an open question. To identify important mutant H3.3 effectors, we used CRISPR-Cas9 to precisely introduce H3.3 K27M and G34R mutations into previously H3.3-wildtype human astrocyte and glioma cells, while in parallel reverting mutations in glioma cells back to wildtype. K27M and G34R mutations invoked some strikingly similar epigenomic effects supporting a new model in which some major aspects of their oncogenic functions are shared. For instance, both K27M and G34R induced changes at many of the same genomic loci in specific histone marks, with the largest changes in H3K27me3 including in particular within super-enhancers, which also exhibited perturbed transcriptional function. K27M and G34R mutations induced some gene expression changes that were unique to each mutation, but both mutations changed similar functional ontological clusters and ASCL1 is a shared key putative effector. H3.3 mutant glioma cells are sensitive to ASCL1 knockdown or overexpression, resulting in cell viability that is reduced or increased, respectively. Comparison of our panel of glioma cells gene-edited with precise point mutations to edited glioma cells in other studies that performed gene knockout or overexpression reveals striking differences in the resulting phenotypes. We also determined that certain drugs exhibited specificity to H3.3 mutation-bearing cells including DAPT, JQ1, and ONC201. In vivo, we found that reversion of K27M to WT in glioma cells significantly reduced tumorigenicity in mouse xenograft assays and introduction of G34R mutations in previously WT glioma cells increased tumor growth. Overall, gene editing of gliomas and comparison of otherwise isogenic sets of cells defines both distinct and shared gliomagenesis mechanisms that can be targeted for development of oncohistone-based therapeutics.


Sign in / Sign up

Export Citation Format

Share Document