scholarly journals HG-123AN EPIGENOMIC SCREEN REVEALS THE CHROMATIN REMODELING PROTEIN BPTF AS A DRIVER OF HIGH-GRADE GLIOMA AND DIFFUSE INTRINSIC PONTINE GLIOMA GROWTH IN VITRO AND IN VIVO

2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii76.3-iii76
Author(s):  
Adam Green ◽  
Patrick Flannery ◽  
John DeSisto ◽  
Madeleine Lemieux ◽  
Shak Ramkissoon ◽  
...  
2022 ◽  
Author(s):  
Zhiyuan Sun ◽  
Yufu Zhu ◽  
Xia Feng ◽  
Xiaoyun Liu ◽  
Kunlin Zhou ◽  
...  

Abstract H3.3K27M is a newly identified molecular pathology marker in glioma and is especially correlated with the malignancy of diffuse intrinsic pontine glioma (DIPG). In recent years, accumulating research has revealed that other types of glioma also contain the H3.3K27M mutation. However, the role of H3.3K27M in high-grade adult glioma, which is the most malignant glioma, has not been investigated. In this study, we focused on exploring the expression and function of H3.3K27M in high-grade adult glioma patients. We found that H3.3K27M is partly highly expressed in high-grade glioma tissues. Then, we introduced H3.3K27M into H3.3 wild-type glioma cells, U87 cells and LN229 cells. We found that H3.3K27M did not regulate the growth of glioma in vitro and in vivo; however, the survival of mice with transplanted tumors was significantly reduced. Further investigation revealed that H3.3K27M expression mainly promoted the migration and invasion of glioma cells. Moreover, we certified that H3.3K27M overexpression enhanced the protein levels of ꞵ-catenin and p-ꞵ-catenin, the protein and mRNA levels of ubiquitin-specific protease 1 (USP1), and the protein level of enhancer of zeste homolog 2 (EZH2). Importantly, the ꞵ-catenin inhibitor XAV-939 significantly attenuated the upregulation of the aforementioned proteins. Overall, the H3.3K27M mutation is present in a certain proportion of high-grade glioma patients and facilitates a poor prognosis by promoting the metastasis of glioma by regulating the ꞵ-catenin/USP1/EZH2 pathway.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i19-i20
Author(s):  
Kasey Skinner ◽  
Tomoyuki Koga ◽  
Shunichiro Miki ◽  
Robert F Gruener ◽  
R Stephanie Huang ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is a subset of high-grade glioma that occurs predominantly in children and has no cure. Up to 80% of DIPG harbor a heterozygous point mutation that results in a lysine 27 to methionine substitution in histone variant H3.3 (H3.3K27M). Existing DIPG models have provided insight into the role of H3.3K27M but have limitations: genetically engineered murine models often rely on overexpression of the mutant histone to form tumors; patient-derived xenografts (PDX) are more genetically faithful but preclude examination of the effect of individual mutations on pathogenesis. To address these shortcomings and better recapitulate the genetics of human tumors, we designed a novel DIPG model based on human induced pluripotent stem cells (iPSC) edited via CRISPR to express heterozygous H3.3K27M. Edited iPSC were chemically differentiated into neural progenitor cells, which upon implantation into the brainstems of immunodeficient mice formed diffusely invasive tumors that were histologically consistent with high-grade glioma. Further, neurospheres cultured from primary tumors formed secondary tumors upon reimplantation with more diffuse invasion, suggesting in vivo evolution. To validate this model’s relevance to DIPG transcriptionally, we performed RNA-sequencing on a cohort of primary and secondary tumor neurospheres (termed primary and secondary iDIPG) and compared them to published RNA-seq data from pediatric PDX and patient tumor samples. Hierarchical clustering and principal component analysis on differentially expressed genes (P<0.05) showed that H3.3K27M iDIPG cluster with H3.3K27M PDX and patient tumors. Further, ssGSEA showed that H3.3K27M iDIPG are enriched for astrocytic and mesenchymal signature genes, a defining feature of H3.3K27M DIPG. Finally, we found that primary H3.3K27M iDIPG neurospheres are sensitive to panobinostat, an HDAC inhibitor shown to be effective against H3.3K27M DIPG cells in vitro. Overall, these data suggest that H3.3K27M iDIPG are a promising tool for investigating DIPG biology and new therapeutic strategies.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61512 ◽  
Author(s):  
Susanna J. E. Veringa ◽  
Dennis Biesmans ◽  
Dannis G. van Vuurden ◽  
Marc H. A. Jansen ◽  
Laurine E. Wedekind ◽  
...  

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i18-i18
Author(s):  
Shawn Gillespie ◽  
Yoon Kim ◽  
Anna Geraghty ◽  
Pamelyn Woo ◽  
Michelle Monje

Abstract High-grade gliomas, including diffuse intrinsic pontine glioma (DIPG), are a lethal group of cancers whose progression is strongly regulated by neuronal activity {Venkatesh 2015}{Venkatesh 2017}{Venkatesh 2019}. One way in which glioma cells sense neuronal activity is via interaction with the ectodomain of post-synaptic adhesion protein neuroligin-3 (NLGN3), which is cleaved and released into the tumor microenvironment (TME) by the sheddase ADAM10. This interaction drives glioma growth, but the relevant binding partner of shed NLGN3 (sNLGN3) on glioma cells is currently unknown. Here, we report that sNLGN3 binds to chondroitin sulfate proteoglycan 4 (CSPG4), in turn inducing regulated intramembrane proteolysis (RIP) of CSPG4, and initiating a signaling cascade within DIPG cells to promote tumor growth. CSPG4 RIP involves activity-regulated ectodomain shedding by ADAM10 and subsequent gamma secretase-mediated release of the intracellular domain in healthy oligodendroglial precursor cells (OPCs), putative cells of origin for several forms of high-grade glioma {Sakry 2014}{Nayak 2018}. Incubation of high-grade glioma cells or healthy OPCs with recombinant NLGN3 is sufficient to augment ADAM10-mediated ectodomain release of CSPG4 and subsequent gamma secretase-mediated cleavage of the CSPG4 intracellular domain (ICD). Pre-treatment of glioma cells or OPCs with an ADAM10 inhibitor entirely blocks NLGN3-induced CSPG4 shedding. Acute depletion of CSPG4 via CRISPR gene editing renders glioma cells insensitive to the growth-promoting effects of NLGN3 application in vitro. We are now performing experiments to better discern how the CSPG4 ICD regulates signaling consequences downstream of sNLGN3 binding. In addition, we are using surface plasmon resonance to investigate whether the shed ectodomains of NLGN3 and CSPG4 remain in complex or only transiently interact. Altogether, our data form a critical missing link in understanding how glioma cells sense, translate and respond to neuronal activity in the TME and identify a new therapeutic target to disrupt neuron-glioma interactions.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i17-i18
Author(s):  
Tara Barron ◽  
Vilina Mehta ◽  
Pamelyn Woo ◽  
Michelle Monje

Abstract Pediatric high-grade gliomas, including diffuse intrinsic pontine glioma (DIPG), are the leading cause of brain cancer-related death in children. While enormous progress has been made in recent years for many forms of cancer, high-grade gliomas remain seemingly intractable, indicating that fundamental aspects of glioma growth are not yet sufficiently understood. Neuronal activity drives glioma growth both through paracrine signaling and through direct neuron-to-glioma synapses. Recently glutamatergic, AMPA receptor-dependent synapses were discovered between microenvironmental neurons and malignant glioma cells. The depolarizing current that results from synaptic and other forms of electrical neuron-glioma signaling promotes pediatric high-grade glioma proliferation and regulates growth. Neuron-glioma cell synapses mediated by other neurotransmitters remain largely unexplored, though glioma cells express genes encoding neurotransmitter receptors such as GABAA receptor subunits. Using whole-cell patch clamp electrophysiology in patient-derived DIPG xenografts, we have identified functional GABAergic neuron-to-glioma synapses mediated by GABAA receptors. GABAergic input has a depolarizing effect on glioma cells, but the magnitude of depolarization is heterogeneous between high-grade glioma subtypes and between patient-derived DIPG xenograft models. As membrane depolarization increases glioma proliferation, depolarizing GABAergic inputs to glioma cells could promote DIPG progression. Drugs that stimulate GABA signaling, such as benzodiazepines, are often given to pediatric glioma patients to treat nausea, seizures or anxiety. In patient-derived DIPG xenograftn models, lorazepam, a benzodiazepine that increases GABAA receptor conductance, increases glioma growth. Conversely, levetiracetam, an anti-epileptic drug that reduces synaptic transmission including at GABAergic neuron-glioma synapses, reduces glioma proliferation in patient-derived DIPG xenografts. This emerging understanding of brain cancer neurophysiology reveals new therapeutic targets and highlights commonly used drugs about which more study is required in this disease context.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii97-ii97
Author(s):  
Diana Carvalho ◽  
Peter Richardson ◽  
Nagore Gene Olaciregui ◽  
Reda Stankunaite ◽  
Cinzia Emilia Lavarino ◽  
...  

Abstract Somatic mutations in ACVR1, encoding the serine/threonine kinase ALK2 receptor, are found in a quarter of children with the currently incurable brain tumour diffuse intrinsic pontine glioma (DIPG). Treatment of ACVR1-mutant DIPG patient-derived models with multiple inhibitor chemotypes leads to a reduction in cell viability in vitro and extended survival in orthotopic xenografts in vivo, though there are currently no specific ACVR1 inhibitors licensed for DIPG. Using an Artificial Intelligence-based platform to search for approved compounds which could be used to treat ACVR1-mutant DIPG, the combination of vandetanib and everolimus was identified as a possible therapeutic approach. Vandetanib, an approved inhibitor of VEGFR/RET/EGFR, was found to target ACVR1 (Kd=150nM) and reduce DIPG cell viability in vitro, but has been trialed in DIPG patients with limited success, in part due to an inability to cross the blood-brain-barrier. In addition to mTOR, everolimus inhibits both ABCG2 (BCRP) and ABCB1 (P-gp) transporter, and was synergistic in DIPG cells when combined with vandetanib in vitro. This combination is well-tolerated in vivo, and significantly extended survival and reduced tumour burden in an orthotopic ACVR1-mutant patient-derived DIPG xenograft model. Based on these preclinical data, three patients with ACVR1-mutant DIPG were treated with vandetanib and everolimus. These cases may inform on the dosing and the toxicity profile of this combination for future clinical studies. This bench-to-bedside approach represents a rapidly translatable therapeutic strategy in children with ACVR1 mutant DIPG.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dilakshan Srikanthan ◽  
Michael S. Taccone ◽  
Randy Van Ommeren ◽  
Joji Ishida ◽  
Stacey L. Krumholtz ◽  
...  

AbstractDiffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor and the leading cause of brain tumor–related death in children. As several clinical trials over the past few decades have led to no significant improvements in outcome, the current standard of care remains fractionated focal radiation. Due to the recent increase in stereotactic biopsies, tumor tissue availabilities have enabled our advancement of the genomic and molecular characterization of this lethal cancer. Several groups have identified key histone gene mutations, genetic drivers, and methylation changes in DIPG, providing us with new insights into DIPG tumorigenesis. Subsequently, there has been increased development of in vitro and in vivo models of DIPG which have the capacity to unveil novel therapies and strategies for drug delivery. This review outlines the clinical characteristics, genetic landscape, models, and current treatments and hopes to shed light on novel therapeutic avenues and challenges that remain.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii413-iii413
Author(s):  
Maggie Seblani ◽  
Markella Zannikou ◽  
Katarzyna Pituch ◽  
Liliana Ilut ◽  
Oren Becher ◽  
...  

Abstract Diffuse intrinsic pontine glioma (DIPG) is a devastating brain tumor affecting young children. Immunotherapies hold promise however the lack of immunocompetent models recreating a faithful tumor microenvironment (TME) remains a challenge for development of targeted immunotherapeutics. We propose to generate an immunocompetent DIPG mouse model through induced overexpression of interleukin 13 receptor alpha 2 (IL13Rα2), a tumor-associated antigen overexpressed by glioma cells. A model with an intact TME permits comprehensive preclinical assessment of IL13Rα2-targeted immunotherapeutics. Our novel model uses the retroviral avian leucosis and sarcoma virus (RCAS) for in vivo gene delivery leading to IL13Rα2 expression in proliferating progenitor cells. Transfected cells expressing IL13Rα2 and PDGFB, a ligand for platelet derived growth factor receptor, alongside induced p53 loss via the Cre-Lox system are injected in the fourth ventricle in postnatal pups. We validated the expression of PDGFB and IL13Rα2 transgenes in vitro and in vivo and will characterize the TME through evaluation of the peripheral and tumor immunologic compartments using immunohistochemistry and flow cytometry. We confirmed expression of transgenes via flow cytometry and western blotting. Comparison of survival dynamics in mice inoculated with PDGFB alone with PDGFB+IL13Rα2 demonstrated that co-expression of IL13Rα2 did not significantly affect mice survival compared to the PDGFB model. At time of application, we initiated experiments to characterize the TME. Preliminary data demonstrate establishment of tumors within and adjacent to the brainstem and expression of target transgenes. Preclinical findings in a model recapitulating the TME may provide better insight into outcomes upon translation to clinical application.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ryan J Duchatel ◽  
Abdul Mannan ◽  
Ameha S Woldu ◽  
Tom Hawtrey ◽  
Phoebe A Hindley ◽  
...  

Abstract Background Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem tumor for which radiation is the only treatment. Case studies report a clinical response to ONC201 for patients with H3K27M-mutant gliomas. Oncoceutics (ONC201) is only available in the United States and Japan; however, in Germany, DIPG patients can be prescribed and dispensed a locally produced compound—ONC201 German-sourced ONC201 (GsONC201). Pediatric oncologists face the dilemma of supporting the administration of GsONC201 as conjecture surrounds its authenticity. Therefore, we compared GsONC201 to original ONC201 manufactured by Oncoceutics Inc. Methods Authenticity of GsONC201 was determined by high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Biological activity was shown via assessment of on-target effects, in vitro growth, proliferation, and apoptosis analysis. Patient-derived xenograft mouse models were used to assess plasma and brain tissue pharmacokinetics, pharmacodynamics, and overall survival (OS). The clinical experience of 28 H3K27M+ mutant DIPG patients who received GsONC201 (2017–2020) was analyzed. Results GsONC201 harbored the authentic structure, however, was formulated as a free base rather than the dihydrochloride salt used in clinical trials. GsONC201 in vitro and in vivo efficacy and drug bioavailability studies showed no difference compared to Oncoceutics ONC201. Patients treated with GsONC201 (n = 28) showed a median OS of 18 months (P = .0007). GsONC201 patients who underwent reirradiation showed a median OS of 22 months compared to 12 months for GsONC201 patients who did not (P = .012). Conclusions This study confirms the biological activity of GsONC201 and documents the OS of patients who received the drug; however, GsONC201 was never used as a monotherapy.


Sign in / Sign up

Export Citation Format

Share Document