TMOD-21. A NOVEL IN-VITRO METHOD TO MODEL MACROPHAGES IN GLIOBLASTOMA

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi220-vi220
Author(s):  
Hasan Alrefai ◽  
Andee Beierle ◽  
Lauren Nassour ◽  
Nicholas Eustace ◽  
Zeel Patel ◽  
...  

Abstract BACKGROUND The GBM tumor microenvironment (TME) is comprised of a plethora of cancerous and non-cancerous cells that contribute to GBM growth, invasion, and chemoresistance. In-vitro models of GBM typically fail to incorporate multiple cell types. Others have addressed this problem by employing 3D bioprinting to incorporate astrocytes and macrophages in an extracellular matrix; however, they used serum-containing media and classically polarized anti-inflammatory macrophages. Serum has been shown to cause GBM brain-tumor initiating cells to lose their stem-like properties, highlighting the importance of excluding it from these models. Additionally, tumor-associated macrophages (TAMs) do not adhere to the traditional M2 phenotype. METHODS THP-1 monocytes and normal human astrocytes (NHAs) were transitioned into serum-free HL-1 and neurobasal-based media, respectively. Monocytes were stimulated towards a macrophage-like state with PMA and polarized by co-culturing them with GBM patient-derived xenograft(PDX) lines, using a transwell insert. CD206 expression was used to validate polarization and a cytokine array was used to characterize the cells. RESULTS There was no difference in proliferation rates at 72 hours for THP-1 monocytes grown in serum-free HL-1 media compared to serum-containing RPMI 1640 (p > 0.95). Macrophages polarized via transwell inserts expressed the lymphocyte chemoattractant protein, CCL2, whereas resting(M0), pro-inflammatory(M1), and anti-inflammatory(M2) macrophages did not. Additionally, these macrophages expressed more CXCL1 and IL-1ß relative to M1 macrophages. We have also demonstrated a method to maintain a tri-culture model of GBM PDX cells, NHAs, and TAMs in a serum-free media that supports the growth/maintenance of all cell types. CONCLUSIONS We have demonstrated a novel method by which we can polarize macrophages towards a tumor-supportive phenotype that differs in cytokine expression from traditionally polarized macrophages. This higher-fidelity method of modeling TAMs in GBM can aid in the development of targeted therapeutics that may one day enter the clinic in hopes of improving outcomes in GBM.

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Ann-Kristin Afflerbach ◽  
Mark D. Kiri ◽  
Tahir Detinis ◽  
Ben M. Maoz

The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Sadman Sakib ◽  
Anna Voigt ◽  
Taylor Goldsmith ◽  
Ina Dobrinski

Abstract Organoids are three dimensional structures consisting of multiple cell types that recapitulate the cellular architecture and functionality of native organs. Over the last decade, the advent of organoid research has opened up many avenues for basic and translational studies. Following suit of other disciplines, research groups working in the field of male reproductive biology have started establishing and characterizing testicular organoids. The three-dimensional architectural and functional similarities of organoids to their tissue of origin facilitate study of complex cell interactions, tissue development and establishment of representative, scalable models for drug and toxicity screening. In this review, we discuss the current state of testicular organoid research, their advantages over conventional monolayer culture and their potential applications in the field of reproductive biology and toxicology.


2021 ◽  
Vol 12 ◽  
pp. 204173142098520
Author(s):  
Justine Creff ◽  
Laurent Malaquin ◽  
Arnaud Besson

The intestinal epithelium, the fastest renewing tissue in human, is a complex tissue hosting multiple cell types with a dynamic and multiparametric microenvironment, making it particularly challenging to recreate in vitro. Convergence of recent advances in cellular biology and microfabrication technologies have led to the development of various bioengineered systems to model and study the intestinal epithelium. Theses microfabricated in vitro models may constitute an alternative to current approaches for studying the fundamental mechanisms governing intestinal homeostasis and pathologies, as well as for in vitro drug screening and testing. Herein, we review the recent advances in bioengineered in vitro intestinal models.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2020 ◽  
Vol 7 (2) ◽  
pp. 36 ◽  
Author(s):  
João P. Cotovio ◽  
Tiago G. Fernandes

Liver disease is one of the leading causes of death worldwide, leading to the death of approximately 2 million people per year. Current therapies include orthotopic liver transplantation, however, donor organ shortage remains a great challenge. In addition, the development of novel therapeutics has been limited due to the lack of in vitro models that mimic in vivo liver physiology. Accordingly, hepatic cell lineages derived from human pluripotent stem cells (hPSCs) represent a promising cell source for liver cell therapy, disease modelling, and drug discovery. Moreover, the development of new culture systems bringing together the multiple liver-specific hepatic cell types triggered the development of hPSC-derived liver organoids. Therefore, these human liver-based platforms hold great potential for clinical applications. In this review, the production of the different hepatic cell lineages from hPSCs, including hepatocytes, as well as the emerging strategies to generate hPSC-derived liver organoids will be assessed, while current biomedical applications will be highlighted.


2017 ◽  
Vol 114 (30) ◽  
pp. E6147-E6156 ◽  
Author(s):  
Dou Yu ◽  
Omar F. Khan ◽  
Mario L. Suvà ◽  
Biqin Dong ◽  
Wojciech K. Panek ◽  
...  

Brain tumor-initiating cells (BTICs) have been identified as key contributors to therapy resistance, recurrence, and progression of diffuse gliomas, particularly glioblastoma (GBM). BTICs are elusive therapeutic targets that reside across the blood–brain barrier, underscoring the urgent need to develop novel therapeutic strategies. Additionally, intratumoral heterogeneity and adaptations to therapeutic pressure by BTICs impede the discovery of effective anti-BTIC therapies and limit the efficacy of individual gene targeting. Recent discoveries in the genetic and epigenetic determinants of BTIC tumorigenesis offer novel opportunities for RNAi-mediated targeting of BTICs. Here we show that BTIC growth arrest in vitro and in vivo is accomplished via concurrent siRNA knockdown of four transcription factors (SOX2, OLIG2, SALL2, and POU3F2) that drive the proneural BTIC phenotype delivered by multiplexed siRNA encapsulation in the lipopolymeric nanoparticle 7C1. Importantly, we demonstrate that 7C1 nano-encapsulation of multiplexed RNAi is a viable BTIC-targeting strategy when delivered directly in vivo in an established mouse brain tumor. Therapeutic potential was most evident via a convection-enhanced delivery method, which shows significant extension of median survival in two patient-derived BTIC xenograft mouse models of GBM. Our study suggests that there is potential advantage in multiplexed targeting strategies for BTICs and establishes a flexible nonviral gene therapy platform with the capacity to channel multiplexed RNAi schemes to address the challenges posed by tumor heterogeneity.


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0197493 ◽  
Author(s):  
Luca Sanguigno ◽  
Antonella Casamassa ◽  
Niccola Funel ◽  
Massimiliano Minale ◽  
Rodolfo Riccio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document