scholarly journals Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization

2015 ◽  
Vol 18 (6) ◽  
pp. 797-806 ◽  
Author(s):  
Jason H. Stafford ◽  
Takahisa Hirai ◽  
Lei Deng ◽  
Sophia B. Chernikova ◽  
Kimiko Urata ◽  
...  
2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi252-vi252
Author(s):  
Sabbir Khan ◽  
Yuji Piao ◽  
Sandeep Mittal ◽  
Kain McGee ◽  
Soon Park ◽  
...  

Abstract Glioblastoma (GBM) is the most common, highly aggressive and lethal primary brain tumor in adults, and has a median overall survival ranging from 12 to 15 months. Several human cancers including glioma are infiltrated with numerous immune cell types which play a critical role in tumor growth, invasion and resistance to treatment. Previous studies, including our group, have shown that resistance to anti-VEGF therapy is associated with myeloid cell infiltration and mesenchymal transition in GBM. Notably, most glioma patients have shown increase in CD68+ cells due to overproduction of colony stimulating factor 1 (CSF-1) by tumor cells, a growth factor for macrophages. Therefore, we hypothesized that CSF-1 inhibition may reduce macrophage and/or myeloid cell infiltration in glioma, thereby increasing animal survival as monotherapy or in combination with VEGF inhibitors in xenograft GBM mouse models. We tested two CSF-1R inhibitors (AZD 7507 and JNJ-28312141) alone and in combination with VEGF inhibition to prevent macrophage infiltration in xenograft GBM mouse models. CSF-1R and VEGF inhibitors reduced macrophage infiltration (F4/80 staining), tumor volume, and mesenchymal transition (YKL-40 staining), and there was a marginal survival benefit in this model. Interestingly, despite significant reduction in tumor macrophages, we observed a significant increase in neutrophil infiltration and hypoxia (HIF1α staining), particularly in the combinatorial treated. Considering these observations, we further evaluated tumor-associated neutrophil (TAN) infiltration in GBM patient tumors by fluorescence-activated cell sorting (FACS). FACS-isolated TANs were identified as CD11b+/CD15+/CD66b+ triple positive. Our results shown that the infiltrating TAN population vary from 0.5 to 5% in GBM patient tumors. Detailed characterization of TAN population and polarization in patient tumors are ongoing. Our findings revealed that CSF-1 and VEGF inhibition reduced macrophage infiltration and tumor growth, but significantly increased TAN infiltration which will likely hamper the potential therapeutic benefit of anti-CSF1-directed inhibitors.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3005-3017 ◽  
Author(s):  
Joanna M. Woodcock ◽  
Barbara J. McClure ◽  
Frank C. Stomski ◽  
Michael J. Elliott ◽  
Christopher J. Bagley ◽  
...  

Abstract The granulocyte-macrophage colony-stimulating factor (GM-CSF ) receptor is expressed on normal and malignant hematopoietic cells as well as on cells from other organs in which it transduces a variety of functions. Despite the widespread expression and pleiotropic nature of the GM-CSF receptor, little is known about its assembly and activation mechanism. Using a combination of biochemical and functional approaches, we have found that the human GM-CSF receptor exists as an inducible complex, analogous to the interleukin-3 (IL-3) receptor, and also as a preformed complex, unlike the IL-3 receptor or indeed other members of the cytokine receptor superfamily. We found that monoclonal antibodies to the GM-CSF receptor α chain (GMRα) and to the common β chain of the GM-CSF, IL-3, and IL-5 receptors (βc ) immunoprecipitated both GMRα and βc from the surface of primary myeloid cells, myeloid cell lines, and transfected cells in the absence of GM-CSF. Further association of the two chains could be induced by the addition of GM-CSF. The preformed complex required only the extracellular regions of GMRα and βc , as shown by the ability of soluble βc to associate with membrane-anchored GMRα or soluble GMRα. Kinetic experiments on eosinophils and monocytes with radiolabeled GM-CSF, IL-3, and IL-5 showed association characteristics unique to GM-CSF. Significantly, receptor phosphorylation experiments showed that not only GM-CSF but also IL-3 and IL-5 stimulated the phosphorylation of GMRα-associated βc . These results indicate a pattern of assembly of the heterodimeric GM-CSF receptor that is unique among receptors of the cytokine receptor superfamily. These results also suggest that the preformed GM-CSF receptor complex mediates the instantaneous binding of GM-CSF and is a target of phosphorylation by IL-3 and IL-5, raising the possibility that some of the biologic activities of IL-3 and IL-5 are mediated through the GM-CSF receptor complex.


2018 ◽  
Vol 217 (9) ◽  
pp. 1481-1490 ◽  
Author(s):  
Sivakumar Periasamy ◽  
Jonathan A Harton

Abstract Bacterial pneumonia is a common risk factor for acute lung injury and sepsis-mediated death, but the mechanisms underlying the overt inflammation and accompanying pathology are unclear. Infiltration of immature myeloid cells and necrotizing inflammation mediate severe pathology and death during pulmonary infection with Francisella tularensis. However, eliciting mature myeloid cells provides protection. Yet, the host factors responsible for this pathologic immature myeloid cell response are unknown. Here, we report that while the influx of both mature and immature myeloid cells is strictly MyD88 dependent, the interleukin 1 (IL-1) receptor mediates an important dual function via its ligands IL-1α and IL-1β. Although IL-1β favors the appearance of bacteria-clearing mature myeloid cells, IL-1α contributes to lung infiltration by ineffective and pathologic immature myeloid cells. Finally, IL-1α and IL-1β are not the sole factors involved, but myeloid cell responses during acute pneumonia were largely unaffected by lung levels of interleukin 10, interleukin 17, CXCL1, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor.


2020 ◽  
Vol 123 (3) ◽  
pp. 438-448 ◽  
Author(s):  
Malgorzata Sielska ◽  
Piotr Przanowski ◽  
Maria Pasierbińska ◽  
Kamil Wojnicki ◽  
Katarzyna Poleszak ◽  
...  

Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2310-2318 ◽  
Author(s):  
Karen L. Anderson ◽  
Kent A. Smith ◽  
Hugh Perkin ◽  
Gary Hermanson ◽  
Carol-Gay Anderson ◽  
...  

PU.1 is a hematopoietic cell–specific ets family transcription factor. Gene disruption of PU.1 results in a cell autonomous defect in hematopoietic progenitor cells that manifests as abnormal myeloid and B-lymphoid development. Of the myeloid lineages, no mature macrophages develop, and the neutrophils that develop are aberrantly and incompletely matured. One of the documented abnormalities of PU.1 null (deficient) hematopoietic cells is a failure to express receptors for granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage (GM)-CSF, and M-CSF. To elucidate the roles of the myeloid growth factor receptors in myeloid cell differentiation, and to distinguish their role from that of PU.1, we have restored expression of the G- and M-CSF receptors in PU.1-deficient cells using retroviral vectors. We have similarly expressed PU.1 in these cells. Whereas expression of growth factor receptors merely allows a PU.1-deficient cell line to survive and grow in the relevant growth factor, expression of PU.1 enables the development of F4/80+, Mac-1+/CD11b+ macrophages, expression of gp91phox and generation of superoxide, and expression of secondary granule genes for neutrophil collagenase and gelatinase. These studies reinforce the idea that availability of PU.1 is crucial for normal myeloid development and clarify some of the molecular events in developing neutrophils and macrophages that are critically dependent on PU.1.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
B. Rumore-Maton ◽  
J. Elf ◽  
N. Belkin ◽  
B. Stutevoss ◽  
F. Seydel ◽  
...  

Defects in macrophage colony-stimulating factor (M-CSF) signaling disrupt myeloid cell differentiation in nonobese diabetic (NOD) mice, blocking myeloid maturation into tolerogenic antigen-presenting cells (APCs). In the absence of M-CSF signaling, NOD myeloid cells have abnormally high granulocyte macrophage colony-stimulating factor (GM-CSF) expression, and as a result, persistent activation of signal transducer/activator of transcription 5 (STAT5). Persistent STAT5 phosphorylation found in NOD macrophages is not affected by inhibiting GM-CSF. However, STAT5 phosphorylation in NOD bone marrow cells is diminished if GM-CSF signaling is blocked. Moreover, if M-CSF signaling is inhibited, GM-CSF stimulationin vitrocan promote STAT5 phosphorylation in nonautoimmune C57BL/6 mouse bone marrow cultures to levels seen in the NOD. These findings suggest that excessive GM-CSF production in the NOD bone marrow may interfere with the temporal sequence of GM-CSF and M-CSF signaling needed to mediate normal STAT5 function in myeloid cell differentiation gene regulation.


Sign in / Sign up

Export Citation Format

Share Document