scholarly journals NIMG-61. PATTERNS OF GLIOBLASTOMA RECURRENCE IN LOW FIELD INTENSITY REGIONS DURING TTFIELDS TREATMENT

2016 ◽  
Vol 18 (suppl_6) ◽  
pp. vi137-vi138
Author(s):  
James Battiste ◽  
Suriya Jeyapalan ◽  
Edward Pan ◽  
Josie Sewell ◽  
Denise Damek ◽  
...  
2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi114-vi114
Author(s):  
Robert Briggs ◽  
Edward Pan ◽  
Josie Sewell ◽  
Karen Fink ◽  
Adam Smitherman ◽  
...  

Author(s):  
Nailin Yang ◽  
Fei Gong ◽  
Liang Cheng ◽  
Huali Lei ◽  
Wei Li ◽  
...  

Abstract Magnetic hyperthermia therapy (MHT) is able to ablate tumors using an alternating magnetic field (AMF) to heat up magnetocaloric agents (e.g. magnetic nanoparticles) administered into the tumors. For clinical applications, there is still a demand to find new magnetocaloric agents with strong AMF-induced heating performance and excellent biocompatibility. As a kind of biocompatible and biodegradable material, magnesium (Mg) and its alloys have been extensively used in the clinic as an implant metal. Herein, we discovered that the eddy thermal effect of the magnesium alloy (MgA) could be employed for MHT to effectively ablate tumors. Under low-field-intensity AMFs, MgA rods could be rapidly heated, resulting in a temperature increase in nearby tissues. Such AMF-induced eddy thermal heating of MgA could not only be used to kill tumor cells in vitro, but also be employed for effective and accurate ablation of tumors in vivo. In addition to killing tumors in mice, we further demonstrated that VX2 tumors of much larger sizes growing in rabbits after implantation of MgA rods could also be eliminated after exposure to an AMF, illustrating the ability of MgA-based MHT to kill large-sized tumors. Moreover, the implanted MgA rods showed excellent biocompatibility and ∼20% of their mass was degraded within three months. Our work thus discovered for the first time that non-magnetic biodegradable MgA, an extensively used implant metal in clinic, could be used for effective magnetic thermal ablation of tumors under a low-field-intensity AMF. Such a strategy could be readily translated into clinical use.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Luguang Huang ◽  
Mengbin Li ◽  
Shuiping Gou ◽  
Xiaopeng Zhang ◽  
Kun Jiang

Accurate segmentation of abdominal organs has always been a difficult problem, especially for organs with cavities. And MRI-guided radiotherapy is particularly attractive for abdominal targets compared with low CT contrast. But in the limit of radiotherapy environment, only low field MRI segmentation can be used for stomach location, tracking, and treatment planning. In clinical applications, the existing 3D segmentation network model is trained by the low field MRI, and the segmentation result cannot be used in radiotherapy plan since the bad segmentation performance. Another way is that historical high field intensity MR images are directly used for data expansion to network learning; there will be a domain shift problem. How to use different domain images to improve the segmentation accuracy of deep neural network? A 3D low field MRI stomach segmentation method based on transfer learning image enhancement is proposed in this paper. In this method, Cycle Generative Adversarial Network (CycleGAN) is used to construct and learn the mapping relationship between high and low field intensity MRI and to overcome domain shift. Then, the image generated by the high field intensity MRI through the CycleGAN network is with transferred information as the extended data. The low field MRI combines these extended datasets to form the training data for training the 3D Res-Unet segmentation network. Furthermore, the convolution layer, batch normalization layer, and Relu layer together were replaced with a residual module to relieve the gradient disappearance of the neural network. The experimental results show that the Dice coefficient is 2.5 percent better than the baseline method. The over segmentation and under segmentation are reduced by 0.7 and 5.5 percent, respectively. And the sensitivity is improved by 6.4 percent.


1983 ◽  
Vol 44 (C3) ◽  
pp. C3-1033-C3-1036 ◽  
Author(s):  
J. M. Delrieu ◽  
N. S. Sullivan ◽  
Bechgaard
Keyword(s):  

2012 ◽  
Vol 132 (7) ◽  
pp. 499-504
Author(s):  
Masateru Sonehara ◽  
Yoshihiko Nagashima ◽  
Yuichi Takase ◽  
Akira Ejiri ◽  
Takashi Yamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document