scholarly journals DRES-09. REGULATORY EFFECTS OF THE CILIARY GTPASE ARL13B ON PURINE METABOLISM IN GBM

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi73-vi73
Author(s):  
Miranda Saathoff ◽  
Jack Shireman ◽  
Eunus Ali ◽  
Cheol Park ◽  
Issam Ben-Sahra ◽  
...  

Abstract Glioblastoma (GBM) is the most common form of adult primary brain cancer. Despite an aggressive treatment regimen – surgical resection, irradiation, and temozolomide (TMZ) chemotherapy – patients’ prognosis is still grim. TMZ acts by methylating purines, specifically at the O6 and N7 positions of guanine, to induce cytotoxic DNA double-strand breaks. We thus wanted to explore how purine metabolism may contribute to TMZ-resistance. In mammalian cells, purine nucleotides can be recycled by the salvage pathway or generated via de novo synthesis. The salvage pathway is energetically inexpensive relative to de novo thus, highly proliferative GBM cells preferentially utilize the salvage pathway. We have shown that salvage synthesis is reduced in response to TMZ (p-value=0.0021), hinting that the cells may utilize de novo to evade therapy induced alkylation of purines. Using immunoprecipitation-mass spectroscopy analysis, we found a novel interaction between the ciliary GTPase ARL13B and IMPDH2, the rate-limiting enzyme in de novo synthesis. We have shown that this interaction, occurring at the C-terminal domain of ARL13B, plays a significant role in the regulation of purine biosynthesis as abolishing it through ARL13B knockdown reduced flux through de novo (p-value< 0.0001) synthesis as measured by the specific activity of IMPDH2. Further, the lentiviral-mediated rescue of ARL13B brings IMPDH2 activity back to basal levels (p< 0.0001). Given its canonical function as a GTPase, we hypothesize that ARL13B acts as a novel regulator of de novo synthesis by sequestering GDP, allowing IMPDH2 to sense and respond to the cytosolic levels of guanine nucleotides. Without ARL13B the de novo pathway is halted, forcing the cells to rely on salvage to replenish nucleotide pools. Reliance on this pathway in the presence of TMZ causes cells to incorporate damaged nucleotides as a result of the drug’s alkylating action leading to the increased therapeutic efficacy of TMZ.


1979 ◽  
Vol 34 (12) ◽  
pp. 1237-1242 ◽  
Author(s):  
Wolfram Köller ◽  
Helmut Kindl

Abstract Malate synthase is synthesized de novo in the very early phase of germination. Its molecular and immunological properties do not differ from those of malate synthase from fully developed cotyledons. Radioactive leucine was administered to dry seeds of cucumber, and its incorporation into proteins of cotyledons was examined after 2 days of germination. The specific radioactivity of malate synthase, purified by immunoprecipitation and electrophoresis on polyacrylamide gel, was only 1/20 the average value of the total albumin fraction. The minimal incorporation documented by the comparatively low specific activity of isolated malate synthase is discussed in relation to the large pool of malate synthase already present in dry seeds.



1998 ◽  
Vol 180 (7) ◽  
pp. 1814-1821 ◽  
Author(s):  
Yong Yang ◽  
Ho-Ching Tiffany Tsui ◽  
Tsz-Kwong Man ◽  
Malcolm E. Winkler

ABSTRACT pdxK encodes a pyridoxine (PN)/pyridoxal (PL)/pyridoxamine (PM) kinase thought to function in the salvage pathway of pyridoxal 5′-phosphate (PLP) coenzyme biosynthesis. The observation that pdxK null mutants still contain PL kinase activity led to the hypothesis that Escherichia coli K-12 contains at least one other B6-vitamer kinase. Here we support this hypothesis by identifying the pdxY gene (formally, open reading frame f287b) at 36.92 min, which encodes a novel PL kinase. PdxY was first identified by its homology to PdxK in searches of the complete E. coli genome. Minimal clones of pdxY + overexpressed PL kinase specific activity about 10-fold. We inserted an omega cassette intopdxY and crossed the resultingpdxY::ΩKanr mutation into the bacterial chromosome of a pdxB mutant, in which de novo PLP biosynthesis is blocked. We then determined the growth characteristics and PL and PN kinase specific activities in extracts ofpdxK and pdxY single and double mutants. Significantly, the requirement of the pdxB pdxK pdxY triple mutant for PLP was not satisfied by PL and PN, and the triple mutant had negligible PL and PN kinase specific activities. Our combined results suggest that the PL kinase PdxY and the PN/PL/PM kinase PdxK are the only physiologically important B6vitamer kinases in E. coli and that their function is confined to the PLP salvage pathway. Last, we show thatpdxY is located downstream from pdxH (encoding PNP/PMP oxidase) and essential tyrS (encoding aminoacyl-tRNATyr synthetase) in a multifunctional operon.pdxY is completely cotranscribed with tyrS, but about 92% of tyrS transcripts terminate at a putative Rho-factor-dependent attenuator located in thetyrS-pdxY intercistronic region.



Biotecnia ◽  
2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Tania Zenteno-Savín ◽  
Crisalejandra Rivera-Pérez ◽  
Ramón Gaxiola-Robles ◽  
Norma Olguín-Monroy ◽  
Orlando Lugo-Lugo ◽  
...  

Mammals experience some degree of hypoxia during their lifetime. In response to hypoxic challenge, mammalian cells orchestrate specific responses at transcriptional and posttranslational level which lead to changes in the purine metabolites in order to cope with threatening conditions. The aim of this study was to evaluate the response of the enzymes involved in the purine metabolism of human muscle cells to hypoxic conditions. Muscle cells in culture were exposed to hypoxia and the enzymatic activity of inosine monophosphate dehydrogenase (IMPDH), xanthine oxidase (XO), purine nucleoside phosphorylase (PNP) and hypoxanthine guanine phosphoribosyl transferase (HGPRT) as well as their transcript expression were quantified under normoxic and hypoxic conditions. Purine metabolite (hypoxanthine (HX), xanthine (X), uric acid (UA), inosine monophosphate (IMP), inosine, nicotinamide adenine dinucleotide (NAD+), adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), guanosine diphosphate (GDP) and guanosine triphosphate (GTP)) concentrations were also quantified. Significant reduction of IMPDH activity and HX and IMP concentrations (p < 0.05) were observed after hypoxia, suggesting a decrease of de novo synthesis of purines. After hypoxia a global reduction of transcripts was observed, suggesting a reduction of the metabolic machinery of purine metabolism to new steady states that balance ATP demand and ATP supply pathways.



1984 ◽  
Vol 62 (7) ◽  
pp. 577-583 ◽  
Author(s):  
Amos Cohen ◽  
Jerzy Barankiewicz ◽  
Howard M. Lederman ◽  
Erwin W. Gelfand

Human intrathymic T lymphocytes were separated by a bovine serum albumin density gradient into a population of G1-phase small thymocytes and a population of S-phase-enriched large thymocytes. Purine metabolism was studied in these thymocyte populations, representing immature T lymphocytes, and compared with the metabolism of mature T lymphocytes isolated from the peripheral blood. De novo purine biosynthesis was highly cell cycle dependent; i.e., de novo purine biosynthetic activity was found only in large S-phase thymocytes, whereas both G1 T-cell populations lacked any significant activity. Thus G1-phase small thymocytes and G1-phase peripheral blood T lymphocytes have only salvage pathways to maintain their purine nucleotide pools. Despite the similarity of purine salvage activities in G1 thymocytes and in peripheral blood T lymphocytes, small thymocytes have fourfold lower levels of purine nucleoside triphosphates. The decreased levels of purine nucleotides in G1 thymocytes may be the result of increased purine efflux. It was found that an unusually large proportion (24–48%) of hypoxanthine incorporated by G1 thymocytes is excreted into the medium in the form of inosine.



1955 ◽  
pp. 504-519 ◽  
Author(s):  
David A. Goldthwait ◽  
G. Robert Greenberg


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 473
Author(s):  
Yue Hei Leung ◽  
Sonja Christiane Bäßler ◽  
Christian Koch ◽  
Theresa Scheu ◽  
Ulrich Meyer ◽  
...  

Sphingolipids are bioactive lipids that can modulate insulin sensitivity, cellular differentiation, and apoptosis in a tissue-specific manner. However, their comparative profiles in bovine retroperitoneal (RPAT) and subcutaneous adipose tissue (SCAT) are currently unknown. We aimed to characterize the sphingolipid profiles using a targeted lipidomics approach and to assess whether potentially related sphingolipid pathways are different between SCAT and RPAT. Holstein bulls (n = 6) were slaughtered, and SCAT and RPAT samples were collected for sphingolipid profiling. A total of 70 sphingolipid species were detected and quantified by UPLC-MS/MS in multiple reaction monitoring (MRM) mode, including ceramide (Cer), dihydroceramide (DHCer), sphingomyelin (SM), dihydrosphingomyelin (DHSM), ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), galactosylceramide (GalCer), glucosylceramide (GluCer), lactosylceramide (LacCer), sphinganine (DHSph), and sphingosine (Sph). Our results showed that sphingolipids of the de novo synthesis pathway, such as DHSph, DHCer, and Cer, were more concentrated in RPAT than in SCAT. Sphingolipids of the salvage pathway and the sphingomyelinase pathway, such as Sph, S1P, C1P, glycosphingolipid, and SM, were more concentrated in SCAT. Our results indicate that RPAT had a greater extent of ceramide accumulation, thereby increasing the concentration of further sphingolipid intermediates in the de novo synthesis pathway. This distinctive sphingolipid distribution pattern in RPAT and SCAT can potentially explain the tissue-specific activity in insulin sensitivity, proinflammation, and oxidative stress in RPAT and SCAT.



1977 ◽  
Author(s):  
Z. Jerushalmy ◽  
M. Patya ◽  
O. Sperling

Human blood platelets were gtudied for the presence of the pathway of de novo synthesis of purine nucleotides. 8 x 108 cells were incubated for 2.5 h at 37°C in 2 ml of Eagle’s Minimal Essential Medium containing Earle’s Balanced Salt Solution, 15% fetal calf serum and 20 μCi sodium [14C] formate (59 mCi/mmole). Platelets were found to incorporate 14C into total purines at a slow but detectable rate of 50–70 pmoles/8 x 108 cells/2.5 h. This incorporation was inhibited by approximately 80% at 10 mM azaserine and by 60% at 0.1 mM adenine. Adenine is known to affect the rate of purine synthesis de novo through the activity of phosphoribosylpyrophosphate amidotransferase, the first committed enzyme of this pathway. The results suggest the presence of the complete pathway of de novo synthesis of purine nucleotides in normal human peripheral blood platelets.



2003 ◽  
Vol 23 (19) ◽  
pp. 7044-7054 ◽  
Author(s):  
Antonio Bedalov ◽  
Maki Hirao ◽  
Jeffrey Posakony ◽  
Melisa Nelson ◽  
Julian A. Simon

ABSTRACT Nicotine adenine dinucleotide (NAD+) performs key roles in electron transport reactions, as a substrate for poly(ADP-ribose) polymerase and NAD+-dependent protein deacetylases. In the latter two processes, NAD+ is consumed and converted to ADP-ribose and nicotinamide. NAD+ levels can be maintained by regeneration of NAD+ from nicotinamide via a salvage pathway or by de novo synthesis of NAD+ from tryptophan. Both pathways are conserved from yeast to humans. We describe a critical role of the NAD+-dependent deacetylase Hst1p as a sensor of NAD+ levels and regulator of NAD+ biosynthesis. Using transcript arrays, we show that low NAD+ states specifically induce the de novo NAD+ biosynthesis genes while the genes in the salvage pathway remain unaffected. The NAD+-dependent deacetylase activity of Hst1p represses de novo NAD+ biosynthesis genes in the absence of new protein synthesis, suggesting a direct effect. The known Hst1p binding partner, Sum1p, is present at promoters of highly inducible NAD+ biosynthesis genes. The removal of HST1-mediated repression of the NAD+ de novo biosynthesis pathway leads to increased cellular NAD+ levels. Transcript array analysis shows that reduction in cellular NAD+ levels preferentially affects Hst1p-regulated genes in comparison to genes regulated with other NAD+-dependent deacetylases (Sir2p, Hst2p, Hst3p, and Hst4p). In vitro experiments demonstrate that Hst1p has relatively low affinity toward NAD+ in comparison to other NAD+-dependent enzymes. These findings suggest that Hst1p serves as a cellular NAD+ sensor that monitors and regulates cellular NAD+ levels.



2006 ◽  
Vol 34 (5) ◽  
pp. 786-790 ◽  
Author(s):  
R.J. Rolfes

Purine nucleotides are critically important for the normal functioning of cells due to their myriad of activities. It is important for cells to maintain a balance in the pool sizes of the adenine-containing and guanine-containing nucleotides, which occurs by a combination of de novo synthesis and salvage pathways that interconvert the purine nucleotides. This review describes the mechanism for regulation of the biosynthetic genes in the yeast Saccharomyces cerevisiae and compares this mechanism with that described in several microbial species.



Sign in / Sign up

Export Citation Format

Share Document