scholarly journals Resting-State SEEG May Help Localize Epileptogenic Brain Regions

Neurosurgery ◽  
2019 ◽  
Vol 86 (6) ◽  
pp. 792-801 ◽  
Author(s):  
Sarah E Goodale ◽  
Hernán F J González ◽  
Graham W Johnson ◽  
Kanupriya Gupta ◽  
William J Rodriguez ◽  
...  

Abstract BACKGROUND Stereotactic electroencephalography (SEEG) is a minimally invasive neurosurgical method to localize epileptogenic brain regions in epilepsy but requires days in the hospital with interventions to trigger several seizures. OBJECTIVE To make initial progress in the development of network analysis methods to identify epileptogenic brain regions using brief, resting-state SEEG data segments, without requiring seizure recordings. METHODS In a cohort of 15 adult focal epilepsy patients undergoing SEEG, we evaluated functional connectivity (alpha-band imaginary coherence) across sampled regions using brief (2 min) resting-state data segments. Bootstrapped logistic regression was used to generate a model to predict epileptogenicity of individual regions. RESULTS Compared to nonepileptogenic structures, we found increased functional connectivity within epileptogenic regions (P < .05) and between epileptogenic areas and other structures (P < .01, paired t-tests, corrected). Epileptogenic areas also demonstrated higher clustering coefficient (P < .01) and betweenness centrality (P < .01), and greater decay of functional connectivity with distance (P < .05, paired t-tests, corrected). Our functional connectivity model to predict epileptogenicity of individual regions demonstrated an area under the curve of 0.78 and accuracy of 80.4%. CONCLUSION Our study represents a preliminary step towards defining resting-state SEEG functional connectivity patterns to help localize epileptogenic brain regions ahead of neurosurgical treatment without requiring seizure recordings.

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Sarah Goodale ◽  
Hernan F J Gonzalez ◽  
Graham Walter Johnson ◽  
Kanupriya Gupta ◽  
William Rodriguez ◽  
...  

Abstract INTRODUCTION Stereotactic electroencephalography (SEEG) is a minimally invasive neurosurgical method to localize epileptogenic brain regions in epilepsy, but requires days in the hospital with interventions to trigger several uncomfortable seizures. Our goal is to make initial progress in the development of network analysis methods to identify epileptogenic brain regions using brief, resting-state SEEG data segments, without requiring seizure recordings. METHODS In a cohort of 15 adult focal epilepsy patients undergoing SEEG, we evaluated functional connectivity (alpha-band imaginary coherence) across sampled regions using brief (2 min) resting-state data segments. Bootstrapped logistic regression was used to generate a model to predict epileptogenicity of individual regions. RESULTS Compared to nonepileptogenic structures, we found increased connectivity within epileptogenic regions (P < .05) and between epileptogenic areas and other structures (P < .01, paired t-tests, corrected). Epileptogenic areas also demonstrated higher clustering coefficient (P < .01) and betweenness centrality (P < .01), and greater decay of connectivity with distance (P < .05, paired t-tests, corrected). Our connectivity model to predict epileptogenicity of individual regions demonstrated an area under the curve (AUC) of 0.78 and accuracy of 80.4%. CONCLUSION Our study represents a preliminary step towards defining resting-state SEEG connectivity patterns to help localize epileptogenic brain regions ahead of neurosurgical treatment without requiring seizure recordings.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Erick Ortiz ◽  
Krunoslav Stingl ◽  
Jana Münßinger ◽  
Christoph Braun ◽  
Hubert Preissl ◽  
...  

Resting state functional connectivity of MEG data was studied in 29 children (9-10 years old). The weighted phase lag index (WPLI) was employed for estimating connectivity and compared to coherence. To further evaluate the network structure, a graph analysis based on WPLI was used to determine clustering coefficient (C) and betweenness centrality (BC) as local coefficients as well as the characteristic path length (L) as a parameter for global interconnectedness. The network’s modular structure was also calculated to estimate functional segregation. A seed region was identified in the central occipital area based on the power distribution at the sensor level in the alpha band. WPLI reveals a specific connectivity map different from power and coherence. BC and modularity show a strong level of connectedness in the occipital area between lateral and central sensors.Cshows different isolated areas of occipital sensors. Globally, a network with the shortestLis detected in the alpha band, consistently with the local results. Our results are in agreement with findings in adults, indicating a similar functional network in children at this age in the alpha band. The integrated use of WPLI and graph analysis can help to gain a better description of resting state networks.


2015 ◽  
Vol 112 (3) ◽  
pp. 887-892 ◽  
Author(s):  
Pablo Barttfeld ◽  
Lynn Uhrig ◽  
Jacobo D. Sitt ◽  
Mariano Sigman ◽  
Béchir Jarraya ◽  
...  

At rest, the brain is traversed by spontaneous functional connectivity patterns. Two hypotheses have been proposed for their origins: they may reflect a continuous stream of ongoing cognitive processes as well as random fluctuations shaped by a fixed anatomical connectivity matrix. Here we show that both sources contribute to the shaping of resting-state networks, yet with distinct contributions during consciousness and anesthesia. We measured dynamical functional connectivity with functional MRI during the resting state in awake and anesthetized monkeys. Under anesthesia, the more frequent functional connectivity patterns inherit the structure of anatomical connectivity, exhibit fewer small-world properties, and lack negative correlations. Conversely, wakefulness is characterized by the sequential exploration of a richer repertoire of functional configurations, often dissimilar to anatomical structure, and comprising positive and negative correlations among brain regions. These results reconcile theories of consciousness with observations of long-range correlation in the anesthetized brain and show that a rich functional dynamics might constitute a signature of consciousness, with potential clinical implications for the detection of awareness in anesthesia and brain-lesioned patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


2019 ◽  
Vol 31 (4) ◽  
pp. 560-573 ◽  
Author(s):  
Kenny Skagerlund ◽  
Taylor Bolt ◽  
Jason S. Nomi ◽  
Mikael Skagenholt ◽  
Daniel Västfjäll ◽  
...  

What are the underlying neurocognitive mechanisms that give rise to mathematical competence? This study investigated the relationship between tests of mathematical ability completed outside the scanner and resting-state functional connectivity (FC) of cytoarchitectonically defined subdivisions of the parietal cortex in adults. These parietal areas are also involved in executive functions (EFs). Therefore, it remains unclear whether there are unique networks for mathematical processing. We investigate the neural networks for mathematical cognition and three measures of EF using resting-state fMRI data collected from 51 healthy adults. Using 10 ROIs in seed to whole-brain voxel-wise analyses, the results showed that arithmetical ability was correlated with FC between the right anterior intraparietal sulcus (hIP1) and the left supramarginal gyrus and between the right posterior intraparietal sulcus (hIP3) and the left middle frontal gyrus and the right premotor cortex. The connection between the posterior portion of the left angular gyrus and the left inferior frontal gyrus was also correlated with mathematical ability. Covariates of EF eliminated connectivity patterns with nodes in inferior frontal gyrus, angular gyrus, and middle frontal gyrus, suggesting neural overlap. Controlling for EF, we found unique connections correlated with mathematical ability between the right hIP1 and the left supramarginal gyrus and between hIP3 bilaterally to premotor cortex bilaterally. This is partly in line with the “mapping hypothesis” of numerical cognition in which the right intraparietal sulcus subserves nonsymbolic number processing and connects to the left parietal cortex, responsible for calculation procedures. We show that FC within this circuitry is a significant predictor of math ability in adulthood.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ruedeerat Keerativittayayut ◽  
Ryuta Aoki ◽  
Mitra Taghizadeh Sarabi ◽  
Koji Jimura ◽  
Kiyoshi Nakahara

Although activation/deactivation of specific brain regions has been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here, we investigated time-varying functional connectivity patterns across the human brain in periods of 30–40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen J. Kohut ◽  
Dionyssios Mintzopoulos ◽  
Brian D. Kangas ◽  
Hannah Shields ◽  
Kelly Brown ◽  
...  

AbstractLong-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen—two brain regions involved in cognitive function and motoric behavior—identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299–424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


2020 ◽  
Vol 52 (1) ◽  
pp. 52-60
Author(s):  
Yousef Mohammadi ◽  
Mohammad Hassan Moradi

Background Depression is one of the most common mental disorders and the leading cause of functional disabilities. This study aims to specify whether functional connectivity and complexity of brain activity can predict the severity of depression (Beck Depression Inventory–II scores). Methods Resting-state, eyes-closed EEG data were recorded from 60 depressed patients. A phase synchronization measure was used to estimate functional connectivity between all pairs of the EEG channels in the delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) frequency bands. To quantify the local value of functional connectivity, 2 graph theory metrics, degree, and clustering coefficient (CC), were measured. Moreover, Lempel-Ziv complexity (LZC) and fuzzy entropy (FuzzyEn) were used to measure the complexity of the EEG signal. Results Through correlation analysis, a significant negative relationship was found between graph metrics and depression severity in the alpha band. This association was strongly positive for the complexity measures in alpha and delta bands. Also, the linear regression model represented a substantial performance of depression severity prediction based on EEG features of the alpha band ( r = 0.839; P < .0001, root mean square error score of 7.69). Conclusion We found that the brain activity of patients with depression was related to depression severity. Abnormal brain activity reflects an increase in the severity of depression. The presented regression model provides a quantitative depression severity prediction, which can inform the development of EEG state and exhibit potential desirable application for the medical treatment of the depressive disorder.


Sign in / Sign up

Export Citation Format

Share Document