scholarly journals Tumor mutational burden predicts survival in patients with low-grade gliomas expressing mutated IDH1

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Mahmoud S Alghamri ◽  
Rohit Thalla ◽  
Ruthvik P Avvari ◽  
Ali Dabaja ◽  
Ayman Taher ◽  
...  

Abstract Background Gliomas are the most common primary brain tumors. High-Grade Gliomas have a median survival (MS) of 18 months, while Low-Grade Gliomas (LGGs) have an MS of approximately 7.3 years. Seventy-six percent of patients with LGG express mutated isocitrate dehydrogenase (mIDH) enzyme. Survival of these patients ranges from 1 to 15 years, and tumor mutational burden ranges from 0.28 to 3.85 somatic mutations/megabase per tumor. We tested the hypothesis that the tumor mutational burden would predict the survival of patients with tumors bearing mIDH. Methods We analyzed the effect of tumor mutational burden on patients’ survival using clinical and genomic data of 1199 glioma patients from The Cancer Genome Atlas and validated our results using the Glioma Longitudinal AnalySiS consortium. Results High tumor mutational burden negatively correlates with the survival of patients with LGG harboring mIDH (P = .005). This effect was significant for both Oligodendroglioma (LGG-mIDH-O; MS = 2379 vs 4459 days in high vs low, respectively; P = .005) and Astrocytoma (LGG-mIDH-A; MS = 2286 vs 4412 days in high vs low respectively; P = .005). There was no differential representation of frequently mutated genes (eg, TP53, ATRX, CIC, and FUBP) in either group. Gene set enrichment analysis revealed an enrichment in Gene Ontologies related to cell cycle, DNA-damage response in high versus low tumor mutational burden. Finally, we identified 6 gene sets that predict survival for LGG-mIDH-A and LGG-mIDH-O. Conclusions we demonstrate that tumor mutational burden is a powerful, robust, and clinically relevant prognostic factor of MS in mIDH patients.

2020 ◽  
Author(s):  
Mahmoud S Alghamri ◽  
Rohit Thalla ◽  
Ruthvik Avvari ◽  
Ali Dabaja ◽  
Ayman Taher ◽  
...  

ABSTRACTGliomas are the most common primary brain tumors. High Grade Gliomas have a median survival of 18 months, while Low Grade Gliomas (LGG) have a median survival of ∼7.3 years. Seventy-six percent of patients with LGG express mutated isocitrate dehydrogenase (mIDH1) enzyme (IDH1R132H). Survival of these patients ranges from 1-15 years, and tumor mutational burden ranges from 8 to 447 total somatic mutations per tumor. We tested the hypothesis that the tumor mutational burden would predict survival of patients with tumors bearing mIDH1R132H. We analyzed the effect of tumor mutational burden on patients’ survival using clinical and genomic data of 1199 glioma patients from The Cancer Genome Atlas and validated our results using the Chinese Glioma Genome Atlas. High tumor mutational burden negatively correlates with survival of patients with LGG harboring IDH1R132H (p<0.0001). This effect was significant for both Oligodendroglioma and Astrocytoma LGG-mIDH1 patients. In the TCGA data, median survival of the high mutational burden group was 76 months, while in the low mutational burden group it was 136 months; p<0.0001. There was no differential representation of frequently mutated genes (e.g., TP53, ATRX, CIC, FUBP) in either group. Gene set enrichment analysis revealed an enrichment in Gene Ontologies related to Cell cycle, DNA damage response in high vs low tumor mutational burden. Finally, we identified a 19 gene signature that predicts survival for patients from both databases. In summary, we demonstrate that tumor mutational burden is a powerful, robust, and clinically relevant prognostic factor of median survival in mIDH1 patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiang-mei Wen ◽  
Zi-jun Xu ◽  
Ye Jin ◽  
Pei-hui Xia ◽  
Ji-chun Ma ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous disease related to a broad spectrum of molecular alterations. The successes of immunotherapies treating solid tumors and a deeper understanding of the immune systems of patients with hematologic malignancies have promoted the development of immunotherapies for the treatment of AML. And high tumor mutational burden (TMB) is an emerging predictive biomarker for response to immunotherapy. However, the association of gene mutation in AML with TMB and immunological features still has not been clearly elucidated. In our study, based on The Cancer Genome Atlas (TCGA) and BeatAML cohorts, 20 frequently mutated genes were found to be covered by both datasets in AML. And TP53 mutation was associated with a poor prognosis, and its mutation displayed exclusiveness with other common mutated genes in both datasets. Moreover, TP53 mutation correlated with TMB and the immune microenvironment. Gene Set Enrichment Analysis (GSEA) showed that TP53 mutation upregulated signaling pathways involved in the immune system. In summary, TP53 mutation is frequently mutated in AML, and its mutation is associated with dismal outcome, TMB, and immunological features, which may serve as a biomarker to predict immune response in AML.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii28-ii28
Author(s):  
Alvaro Alvarado ◽  
Kaleab Tessema ◽  
Kunal Patel ◽  
Riki Kawaguchi ◽  
Richard Everson ◽  
...  

Abstract Despite efforts to gain a deeper understanding of its molecular architecture, glioblastoma (GBM) remains uniformly fatal. While genome-based molecular subtyping has revealed that GBMs may be parsed into several molecularly distinct categories, this insight has yielded little progress towards extending patient survival. In particular, the great phenotypic heterogeneity of GBM – both inter and intratumorally – has hindered therapeutic efforts. To this end, we interrogated tumor samples using a pathway-based approach to resolve tumoral heterogeneity. Gene set enrichment analysis (GSEA) was applied to gene expression data and used to provide an overview of each sample that can be compared to other samples by generating sample clusters based on overall patterns of enrichment. The Cancer Genome Atlas (TCGA) samples were clustered using the canonical and oncogenic signatures and in both cases the clustering was distinct from the molecular subtype previously reported and clusters were informative of patient survival. We also analyzed single cell RNA sequencing datasets and uniformly found two clusters of cells enriched for cell cycle regulation and survival pathways. We have validated our approach by generating gene lists from common elements found in the top contributing genesets for a particular cluster and testing the top targets in appropriate gliomasphere patient-derived lines. Samples enriched for cell cycle related genesets showed a decrease in sphere formation capacity when E2F1, out top target, was silenced and when treated with fulvestrant and calcitriol, which were identified as potential drugs targeting this genelist. Conversely, no changes were observed in samples not enriched for this gene list. Finally, we interrogated spatial heterogeneity and found higher enrichment of the proliferative signature in contrast enhancing compared with non-enhancing regions. Our studies relate inter- and intratumoral heterogeneity to critical cellular pathways dysregulated in GBM, with the ultimate goal of establishing a pipeline for patient- and tumor-specific precision medicine.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qiming Wang ◽  
Yan Cai ◽  
Xuewen Fu ◽  
Liang Chen

In recent years, the incidence and the mortality rate of cervical cancer have been gradually increasing, becoming one of the major causes of cancer-related death in women. In particular, patients with advanced and recurrent cervical cancers present a very poor prognosis. In addition, the vast majority of cervical cancer cases are caused by human papillomavirus (HPV) infection, of which HPV16 infection is the main cause and squamous cell carcinoma is the main presenting type. In this study, we performed screening of differentially expressed genes (DEGs) based on The Cancer Genome Atlas (TCGA) database and GSE6791, constructed a protein–protein interaction (PPI) network to screen 34 hub genes, filtered to the remaining 10 genes using the CytoHubba plug-in, and used survival analysis to determine that RPS27A was most associated with the prognosis of cervical cancer patients and has prognostic and predictive value for cervical cancer. The most significant biological functions and pathways of RPS27A enrichment were subsequently investigated with gene set enrichment analysis (GSEA), and integration of TCGA and GTEx database analyses revealed that RPS27A was significantly expressed in most cancer types. In this study, our analysis revealed that RPS27A can be used as a prognostic biomarker for HPV16 cervical cancer and has biological significance for the growth of cervical cancer cells.


2021 ◽  
Vol 10 ◽  
Author(s):  
Ji’an Yang ◽  
Qian Yang

Glioblastoma multiforme is the most common primary intracranial malignancy, but its etiology and pathogenesis are still unclear. With the deepening of human genome research, the research of glioma subtype screening based on core molecules has become more in-depth. In the present study, we screened out differentially expressed genes (DEGs) through reanalyzing the glioblastoma multiforme (GBM) datasets GSE90598 from the Gene Expression Omnibus (GEO), the GBM dataset TCGA-GBM and the low-grade glioma (LGG) dataset TCGA-LGG from the Cancer Genome Atlas (TCGA). A total of 150 intersecting DEGs were found, of which 48 were upregulated and 102 were downregulated. These DEGs from GSE90598 dataset were enriched using the overrepresentation method, and multiple enriched gene ontology (GO) function terms were significantly correlated with neural cell signal transduction. DEGs between GBM and LGG were analyzed by gene set enrichment analysis (GSEA), and the significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in synapse signaling and oxytocin signaling pathways. Then, a protein-protein interaction (PPI) network was constructed to assess the interaction of proteins encoded by the DEGs. MCODE identified 2 modules from the PPI network. The 11 genes with the highest degrees in module 1 were designated as core molecules, namely, GABRD, KCNC1, KCNA1, SYT1, CACNG3, OPALIN, CD163, HPCAL4, ANK3, KIF5A, and MS4A6A, which were mainly enriched in ionic signaling-related pathways. Survival analysis of the GSE83300 dataset verified the significant relationship between expression levels of the 11 core genes and survival. Finally, the core molecules of GBM and the DrugBank database were assessed by a hypergeometric test to identify 10 drugs included tetrachlorodecaoxide related to cancer and neuropsychiatric diseases. Further studies are required to explore these core genes for their potentiality in diagnosis, prognosis, and targeted therapy and explain the relationship among ionic signaling-related pathways, neuropsychiatric diseases and neurological tumors.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Eirwen M. Miller ◽  
Nicole E. Patterson ◽  
Gregory M. Gressel ◽  
Rouzan G. Karabakhtsian ◽  
Michal Bejerano-Sagie ◽  
...  

Abstract Background The Cancer Genome Atlas identified four molecular subgroups of endometrial cancer with survival differences based on whole genome, transcriptomic, and proteomic characterization. Clinically accessible algorithms that reproduce this data are needed. Our aim was to determine if targeted sequencing alone allowed for molecular classification of endometrial cancer. Methods Using a custom-designed 156 gene panel, we analyzed 47 endometrial cancers and matching non-tumor tissue. Variants were annotated for pathogenicity and medical records were reviewed for the clinicopathologic variables. Using molecular characteristics, tumors were classified into four subgroups. Group 1 included patients with > 570 unfiltered somatic variants, > 9 cytosine to adenine nucleotide substitutions per sample, and < 1 cytosine to guanine nucleotide substitution per sample. Group 2 included patients with any somatic mutation in MSH2, MSH6, MLH1, PMS2. Group 3 included patients with TP53 mutations without mutation in mismatch repair genes. Remaining patients were classified as group 4. Analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, North Carolina, USA). Results Endometrioid endometrial cancers had more candidate variants of potential pathogenic interest (median 6 IQR 4.13 vs. 2 IQR 2.3; p < 0.01) than uterine serous cancers. PTEN (82% vs. 15%, p < 0.01) and PIK3CA (74% vs. 23%, p < 0.01) mutations were more frequent in endometrioid than serous carcinomas. TP53 (18% vs. 77%, p < 0.01) mutations were more frequent in serous carcinomas. Visual inspection of the number of unfiltered somatic variants per sample identified six grade 3 endometrioid samples with high tumor mutational burden, all of which demonstrated POLE mutations, most commonly P286R and V411L. Of the grade 3 endometrioid carcinomas, those with POLE mutations were less likely to have risk factors necessitating adjuvant treatment than those with low tumor mutational burden. Targeted sequencing was unable to assign samples to microsatellite unstable, copy number low, and copy number high subgroups. Conclusions Targeted sequencing can predict the presence of POLE mutations based on the tumor mutational burden. However, targeted sequencing alone is inadequate to classify endometrial cancers into molecular subgroups identified by The Cancer Genome Atlas.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ming Gao ◽  
Xinzhuang Wang ◽  
Dayong Han ◽  
Enzhou Lu ◽  
Jian Zhang ◽  
...  

Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system. As biomedicine advances, the researcher has found the development of GBM is closely related to immunity. In this study, we evaluated the GBM tumor immunoreactivity and defined the Immune-High (IH) and Immune-Low (IL) immunophenotypes using transcriptome data from 144 tumors profiled by The Cancer Genome Atlas (TCGA) project based on the single-sample gene set enrichment analysis (ssGSEA) of five immune expression signatures (IFN-γ response, macrophages, lymphocyte infiltration, TGF-β response, and wound healing). Next, we identified six immunophenotype-related long non-coding RNA biomarkers (im-lncRNAs, USP30-AS1, HCP5, PSMB8-AS1, AL133264.2, LINC01684, and LINC01506) by employing a machine learning computational framework combining minimum redundancy maximum relevance algorithm (mRMR) and random forest model. Moreover, the expression level of identified im-lncRNAs was converted into an im-lncScore using the normalized principal component analysis. The im-lncScore showed a promising performance for distinguishing the GBM immunophenotypes with an area under the curve (AUC) of 0.928. Furthermore, the im-lncRNAs were also closely associated with the levels of tumor immune cell infiltration in GBM. In summary, the im-lncRNA signature had important clinical implications for tumor immunophenotyping and guiding immunotherapy in glioblastoma patients in future.


2020 ◽  
Author(s):  
Zhenhua Yin ◽  
Dejun Wu ◽  
Jianping Shi ◽  
Xiyi Wei ◽  
Nuyun Jin ◽  
...  

Abstract Background: Extensive research has revealed that genes play a pivotal role in tumor development and growth. However, the underlying involvement of gene expression in gastric carcinoma (GC) remains to be investigated further.Methods: In this study, we identified overlapping differentially expressed genes (DEGs) by comparing tumor tissue with adjacent normal tissue using the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database.Results: Our analysis identified 79 up-regulated and ten down-regulated genes. Functional enrichment analysis and prognosis analysis were conducted on the identified genes, and the fatty aldehyde dehydrogenase (FALDH) gene, ALDH3A2, was chosen for more detailed analysis. We performed Gene Set Enrichment Analysis (GSEA) and immunocorrelation analysis (infiltration, copy number alterations, and checkpoints) to elucidate the mechanisms of action of ALDH3A2 in depth. The immunohistochemical (IHC) result based on 140 paraffin-embedded human GC samples indicated that ALDH3A2 was over-expressed in low-grade GC cases and the OS of patients with low expression of ALDH3A2 was significantly shorter than those with high ALDH3A2 expression. In vitro results indicated that the expression of ALDH3A2 was negatively correlated with PDCD1, PDCD1LG2, and CTLA-4.Conclusion: We conclude that ALDH3A2 might be useful as a potential reference value for the relief and immunotherapy of GC, and also as an independent predictive marker for the prognosis of GC.


2021 ◽  
Author(s):  
Yilei Xiao ◽  
Zhaoquan Xing ◽  
Mengyou Li ◽  
Xin Li ◽  
Ding Wang ◽  
...  

Abstract Purpose Low-grade gliomas (LGG) have highly variable clinical behaviors, with a high incidence of disease progression as 70% within ten years. Regardless of treatment combining surgery and radiotherapy or chemotherapy, LGG is still associated with adverse survival outcomes. Therefore, our study was performed to satisfy the increasing demand of novel sensitive biomarkers and therapeutic targets in treatment and diagnosis of LGG. Methods The TCGA data set was used to examine the relationship between H2BC12 expression and clinical pathologic characteristics. The significance of H2BC12 expression in prognosis was also investigated. In addition, H2BC12 expression-related pathways were enriched by gene set enrichment analysis (GSEA). Association analysis of H2BC12 gene expression and immune infiltration was performed by single sample gene set enrichment analysis (ssGSEA). Results Significantly up-regulated expression of H2BC12 mRNA was found in LGG tissue when compared to normal tissue and was proven to be diagnostic (have diagnostic significance) for LGG. In the meantime, high H2BC12 levels were associated with WHO grade, IDH status, 1p/19q codeletion, primary therapy outcome and histological type of LGG, and additionally, prognostic for adverse survival outcomes. In the multivariate analysis, high H2BC12 levels were identified to be an independent predictor for poor survival outcomes of LGG patients. Pathways in cancer, signaling by Wnt or PI3K-AKT signaling pathway, DNA repair, cellular senescence and DNA double strand break repair were differentially activated in the phenotype that positively associated with H2BC12. Conclusion H2BC12 is a promising biomarker for the diagnosis and prognosis of LGG.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuan Nie ◽  
Mei-chun Jiang ◽  
Cong Liu ◽  
Qi Liu ◽  
Xuan Zhu

BackgroundsTumor microenvironment (TME) plays a crucial role in the initiation and progression of Hepatocellular Carcinoma (HCC), especially immune infiltrates. However, there is still a challenge in understanding the modulation of the immune and stromal components in TME, especially TME related genes.MethodsThe proportion of tumor-infiltrating immune cells (TICs) and the immune and stromal scores in 374 HCC patients from The Cancer Genome Atlas (TCGA) database were determined using CIBERSORT and ESTIMATE computational methods. The final screened genes were confirmed by the PPI network and univariate Cox regression of the differentially expressed genes based on different immune or stromal scores. The correlation between the expression levels of the final gene interactions and the clinical characteristics was based on TCGA database and local hospital data. Gene set enrichment analysis (GSEA) and the effect of CXCL5 expression on TICs were conducted.ResultsThere were correlations between the expression of CXCL5 and survival of HCC patients and TMN classification both in TCGA database and local hospital data. The immune-related activities were enriched in the high-expression group; however, the metabolic pathways were enriched in the low-expression group. The result of CIBERSORT analyzing had indicated that CXCL5 expression were correlated with the proportion of NK cells activated, macrophages M0, Mast cells resting, Neutrophils.ConclusionsCXCL5 was a potential prognostic marker for HCC and provides clues regarding immune infiltrates, which offers extra insight for therapeutics of HCC, however, more independent cohorts and functional experiments of CXCL5 are warranted.


Sign in / Sign up

Export Citation Format

Share Document