scholarly journals Therapeutic enhancement of blood–brain and blood–tumor barriers permeability by laser interstitial thermal therapy

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Afshin Salehi ◽  
Mounica R Paturu ◽  
Bhuvic Patel ◽  
Matthew D Cain ◽  
Tatenda Mahlokozera ◽  
...  

Abstract Background The blood–brain and blood–tumor barriers (BBB and BTB), which restrict the entry of most drugs into the brain and tumor, respectively, are a significant challenge in the treatment of glioblastoma. Laser interstitial thermal therapy (LITT) is a minimally invasive surgical technique increasingly used clinically for tumor cell ablation. Recent evidence suggests that LITT might locally disrupt BBB integrity, creating a potential therapeutic window of opportunity to deliver otherwise brain-impermeant agents. Methods We established a LITT mouse model to test if laser therapy can increase BBB/BTB permeability in vivo. Mice underwent orthotopic glioblastoma tumor implantation followed by LITT in combination with BBB tracers or the anticancer drug doxorubicin. BBB/BTB permeability was measured using fluorimetry, microscopy, and immunofluorescence. An in vitro endothelial cell model was also used to corroborate findings. Results LITT substantially disrupted the BBB and BTB locally, with increased permeability up to 30 days after the intervention. Remarkably, molecules as large as human immunoglobulin extravasated through blood vessels and permeated laser-treated brain tissue and tumors. Mechanistically, LITT decreased tight junction integrity and increased brain endothelial cell transcytosis. Treatment of mice bearing glioblastoma tumors with LITT and adjuvant doxorubicin, which is typically brain-impermeant, significantly increased animal survival. Conclusions Together, these results suggest that LITT can locally disrupt the BBB and BTB, enabling the targeted delivery of systemic therapies, including, potentially, antibody-based agents.

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 843
Author(s):  
Bo Kyung Lee ◽  
Soo-Wang Hyun ◽  
Yi-Sook Jung

Yuzu and its main component, hesperidin (HSP), have several health benefits owing to their anti-inflammatory and antioxidant properties. We examined the effects of yuzu and HSP on blood–brain barrier (BBB) dysfunction during ischemia/hypoxia in an in vivo animal model and an in vitro BBB endothelial cell model, and also investigated the underlying mechanisms. In an in vitro BBB endothelial cell model, BBB permeability was determined by measurement of Evans blue extravasation in vivo and in vitro. The expression of tight junction proteins, such as claudin-5 and zonula occludens-1 (ZO-1), was detected by immunochemistry and western blotting, and the reactive oxygen species (ROS) level was measured by 2′7′-dichlorofluorescein diacetate intensity. Yuzu and HSP significantly ameliorated the increase in BBB permeability and the disruption of claudin-5 and ZO-1 in both in vivo and in vitro models. In bEnd.3 cells, yuzu and HSP were shown to inhibit the disruption of claudin-5 and ZO-1 during hypoxia, and the protective effects of yuzu and HSP on claudin-5 degradation seemed to be mediated by Forkhead box O 3a (FoxO3a) and matrix metalloproteinase (MMP)-3/9. In addition, well-known antioxidants, trolox and N-acetyl cysteine, significantly attenuated the BBB permeability increase, disruption of claudin-5 and ZO-1, and FoxO3a activation during hypoxia, suggesting that ROS are important mediators of BBB dysfunction during hypoxia. Collectively, these results indicate that yuzu and HSP protect the BBB against dysfunction via maintaining integrity of claudin-5 and ZO-1, and these effects of yuzu and HSP appear to be a facet of their antioxidant properties. Our findings may contribute to therapeutic strategies for BBB-associated neurodegenerative diseases.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi89-vi89
Author(s):  
Mounica Paturu ◽  
Afshin Salehi ◽  
Matthew Caine ◽  
Tatenda Mahlokozera ◽  
Hiroko Yano ◽  
...  

Abstract INTRODUCTION A central challenge in glioblastoma treatment is the presence of the blood-brain barrier (BBB) and blood-tumor barrier (BTB), which prevent access of drugs to the brain and tumor respectively. Recent evidence in patients suggests laser interstitial thermal therapy (LITT), used clinically for tumor ablation, locally disrupts BBB integrity, potentially creating a therapeutic window to deliver otherwise brain-impermeant agents. METHODS A mouse model for LITT, established using a Nd-YAG laser coupled to a 600 mm fiber optic and thermocouple probe, was inserted via burrhole to target the somatosensory cortex. Syngeneic GL261 tumor cells were stereotactically implanted prior to LITT. BBB and BTB permeability were assessed through measurement of fluorescein and doxorubicin after IV injection. Permeability of IV dextran (10 and 70 kDa) and human IgG was monitored by immunohistochemistry (IHC) analysis. Mechanisms of BBB breakdown in vivo were explored utilizing electron microscopy and IHC. RESULTS By fluorescein assay, LITT-induced BBB and BTB permeability began one day post-treatment and was sustained for at least 2 weeks. Additionally, both normal brain and brain tumors demonstrated an increase in Dextran 10 kDa, Dextran 70 kDa, and human IgG extravasation after IV injection in vivo. Mechanistically, we provide evidence that LITT triggers both a decrease in tight junction integrity and an increase in brain endothelial cell transcytosis. As proof-of-concept that LITT can enhance tumor delivery of systemic drugs, LITT increased IV doxorubicin permeability in brain in vivo. Moreover, LITT plus doxorubicin significantly increased survival in brain tumor-bearing mice compared to doxorubicin or LITT alone. CONCLUSIONS Our data suggest that LITT increases BBB and BTB permeability over a defined time window to large molecular weight agents, including antibodies, through multiple cellular mechanisms. Our preclinical results with LITT plus doxorubicin, which mirror a current clinical trial, indicate LITT can enhance the efficacy of systemically delivered drugs.


2019 ◽  
Vol 133 (20) ◽  
pp. 2045-2059 ◽  
Author(s):  
Da Zhang ◽  
Xiuli Wang ◽  
Siyao Chen ◽  
Selena Chen ◽  
Wen Yu ◽  
...  

Abstract Background: Pulmonary artery endothelial cell (PAEC) inflammation is a critical event in the development of pulmonary arterial hypertension (PAH). However, the pathogenesis of PAEC inflammation remains unclear. Methods: Purified recombinant human inhibitor of κB kinase subunit β (IKKβ) protein, human PAECs and monocrotaline-induced pulmonary hypertensive rats were employed in the study. Site-directed mutagenesis, gene knockdown or overexpression were conducted to manipulate the expression or activity of a target protein. Results: We showed that hydrogen sulfide (H2S) inhibited IKKβ activation in the cell model of human PAEC inflammation induced by monocrotaline pyrrole-stimulation or knockdown of cystathionine γ-lyase (CSE), an H2S generating enzyme. Mechanistically, H2S was proved to inhibit IKKβ activity directly via sulfhydrating IKKβ at cysteinyl residue 179 (C179) in purified recombinant IKKβ protein in vitro, whereas thiol reductant dithiothreitol (DTT) reversed H2S-induced IKKβ inactivation. Furthermore, to demonstrate the significance of IKKβ sulfhydration by H2S in the development of PAEC inflammation, we mutated C179 to serine (C179S) in IKKβ. In purified IKKβ protein, C179S mutation of IKKβ abolished H2S-induced IKKβ sulfhydration and the subsequent IKKβ inactivation. In human PAECs, C179S mutation of IKKβ blocked H2S-inhibited IKKβ activation and PAEC inflammatory response. In pulmonary hypertensive rats, C179S mutation of IKKβ abolished the inhibitory effect of H2S on IKKβ activation and pulmonary vascular inflammation and remodeling. Conclusion: Collectively, our in vivo and in vitro findings demonstrated, for the first time, that endogenous H2S directly inactivated IKKβ via sulfhydrating IKKβ at Cys179 to inhibit nuclear factor-κB (NF-κB) pathway activation and thereby control PAEC inflammation in PAH.


Author(s):  
Malka Shilo ◽  
Anat Sharon ◽  
Koby Baranes ◽  
Menachem Motiei ◽  
Jean-Paul M Lellouche ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 587 ◽  
Author(s):  
Ina Puscas ◽  
Florian Bernard-Patrzynski ◽  
Martin Jutras ◽  
Marc-André Lécuyer ◽  
Lyne Bourbonnière ◽  
...  

Since most preclinical drug permeability assays across the blood-brain barrier (BBB) are still evaluated in rodents, we compared an in vitro mouse primary endothelial cell model to the mouse b.End3 and the acellular parallel artificial membrane permeability assay (PAMPA) models for drug screening purposes. The mRNA expression of key feature membrane proteins of primary and bEnd.3 mouse brain endothelial cells were compared. Transwell® monolayer models were further characterized in terms of tightness and integrity. The in vitro in vivo correlation (IVIVC) was obtained by the correlation of the in vitro permeability data with log BB values obtained in mice for seven drugs. The mouse primary model showed higher monolayer integrity and levels of mRNA expression of BBB tight junction (TJ) proteins and membrane transporters (MBRT), especially for the efflux transporter Pgp. The IVIVC and drug ranking underlined the superiority of the primary model (r2 = 0.765) when compared to the PAMPA-BBB (r2 = 0.391) and bEnd.3 cell line (r2 = 0.019) models. The primary monolayer mouse model came out as a simple and reliable candidate for the prediction of drug permeability across the BBB. This model encompasses a rapid set-up, a fair reproduction of BBB tissue characteristics, and an accurate drug screening.


2012 ◽  
Vol 67 (8) ◽  
pp. 66-78 ◽  
Author(s):  
V. P. Chekhonin ◽  
V. P. Baklaushev ◽  
G. M. Yusubalieva ◽  
N. E. Volgina ◽  
O. I. Gurina

The results of fundamental and applied studies of blood-brain barrier had been conducted by authors during the last 10 years are summarized in the publication. The molecular anatomy of barrier microvessels, as well as promising markers of BBB and other proteins involved in barrier functions are discussed. Via in vitro experiments with endothelial cells of cerebral microvessels we characterized the basic conditions required for adequate BBB modeling. The in vivo data of BBB permeability for macromolecules in normal and different pathological processis including radiation injury, hyperosmotic shock, and nervous tissue ischemia are properly described. A particular attention was focused upon the experimental studies of the permeability and functional reorganization of barrier endothelium during tumor neoangiogenesis. We detected a dramatically increased permeability of neoplastic microvessels both for horseradish peroxidase/serum albumin and labeled monoclonal antibodies. The increased tumor permeability for IgG and the overexpression of target antigens in tumor tissue and peritumoral zone make possible the targeted delivery of diagnostics and therapeutic agents into the tumor by means of monoclonal antibodies. 


2021 ◽  
Author(s):  
Kelsey E Lubin ◽  
Gregory T. Knipp

Abstract Background: The in vivo restrictive properties of the blood brain barrier (BBB) largely arise from astrocyte and pericyte synergistic cell signaling interactions that underlie the brain microvessel endothelial cells (BMEC). In vivo relevant direct contact between astrocytes, pericytes, and BMECS, to our knowledge, has not been established in conventional Transwell® based in vitro screening models of the BBB. We hypothesize that a design of experiments (DOE) optimized direct contact layered triculture model will offer more in vivo relevance for screening in comparison to indirect models. Methods: Plating conditions including the seeding density of all three cell types, matrix protein, and culture time were assessed in DOEP. DOEP was followed by DOEM1 and DOEM2 to assess the influence of medium additives on barrier properties. The permeability of 4 kD dextran, a paracellular marker, was the measured response to arrive at the optimal plating conditions. The optimized model was further assessed for p-glycoprotein function using a substrate and inhibitor along with a set of BBB paracellular and transcellular markers at varying permeation rates.Results: DOEP revealed that length of culture post endothelial cell plating correlated highest with paracellular tightness. In addition, seeding density of the endothelial cell layer influenced paracellular tightness at earlier times of culture, and its impact decreased as culture is extended. Medium additives had varying effects on barrier properties as seen from DOEM1 and DOEM2. At optimal conditions, the model revealed P-gp function along with the ability to differentiate between BBB positive and negative permeants. Conclusions: We have demonstrated that the implementation of DOE based optimization for biologically based systems is an expedited method to establish multi-component in vitro cell models. The direct contact BBB triculture model reveals that the physiologically relevant layering of the three cell types is a practical method of culture to establish a screening model compared to indirect plating methods that incorporate physical barriers between cell types. Additionally, the ability of the model to differentiate between BBB positive and negative permeants suggests that this model may be an enhanced screening tool for potential neuroactive compounds.


2015 ◽  
Vol 13 (1) ◽  
pp. 19 ◽  
Author(s):  
Malka Shilo ◽  
Anat Sharon ◽  
Koby Baranes ◽  
Menachem Motiei ◽  
Jean-Paul M Lellouche ◽  
...  

2021 ◽  
pp. 0271678X2110395
Author(s):  
Mehdi Taslimifar ◽  
Martin Faltys ◽  
Vartan Kurtcuoglu ◽  
François Verrey ◽  
Victoria Makrides

In the CNS, amino acid (AA) neurotransmitters and neurotransmitter precursors are subject to tight homeostatic control mediated by blood-brain barrier (BBB) solute carrier amino acid transporters (AATs). Since the BBB is composed of multiple closely apposed cell types and opportunities for human in vivo studies are limited, we used in vitro and computational approaches to investigate human BBB AAT activity and regulation. Quantitative real-time PCR (qPCR) of the human BBB endothelial cell model hCMEC/D3 (D3) was used to determine expression of selected AAT, tight junction (TJ), and signal transduction (ST) genes under various culture conditions. L-leucine uptake data were interrogated with a computational model developed by our group for calculating AAT activity in complex cell cultures. This approach is potentially applicable to in vitro cell culture drug studies where multiple “receptors” may mediate observed responses. Of 7 Leu AAT genes expressed by D3 only the activity of SLC7A5-SLC3A2/LAT1-4F2HC (LAT1), SLC43A2/LAT4 (LAT4) and sodium-dependent AATs, SLC6A15/B0AT2 (B0AT2), and SLC7A7/y+LAT1 (y+LAT1) were calculated to be required for Leu uptake. Therefore, D3 Leu transport may be mediated by a potentially physiologically relevant functional cooperation between the known BBB AAT, LAT1 and obligatory exchange (y+LAT1), facilitative diffusion (LAT4), and sodium symporter (B0AT2) transporters.


Sign in / Sign up

Export Citation Format

Share Document