scholarly journals 639. Time to Recurrence of Clostridioides difficile Infection (rCDI) is Rapid Following Completion of Standard of Care Antibiotics: Results from ECOSPOR-III, a Phase 3 Double-Blind, Placebo-Controlled Randomized Trial of SER-109, an Investigational Microbiome Therapeutic

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S422-S422
Author(s):  
Thomas J Louie ◽  
Matthew Sims ◽  
Richard Nathan ◽  
Steven O'Marro ◽  
Princy N Kumar ◽  
...  

Abstract Background The natural history of CDI recurrence after antibiotics may be helpful to understand the window of opportunity for microbiome repair. ECOSPOR III evaluated the efficacy of SER-109, an investigational microbiome therapeutic, compared to placebo with rates of rCDI as the primary endpoint. SER-109 was superior to placebo in reducing the rate of rCDI following standard-of-care antibiotics at 8 weeks (12.4% vs 39.8%, respectively; P < 0.001). Herein, we describe results from the secondary endpoint, time to recurrence, in this well-characterized study population. Methods A total of 182 C. difficile toxin+ adults with ≥ 3 CDI episodes and symptom resolution on CDI antibiotics were randomly assigned to SER-109 (4 capsules orally x 3 days) or placebo. Recurrence for this analysis was defined as ≥ 3 unformed stools/day for ≥ 48 hours, ± C. difficile stool toxin test, and an investigator decision to treat. Time to CDI recurrence was analyzed using observed data and Kaplan-Meier methods. Data were not imputed for subjects lost to follow-up or discontinued from study. Subjects who did not have a CDI recurrence were censored on the date of study completion, study discontinuation or death. Results Through 24 weeks, 11/89 (12.4%) SER-109 and 36/93 (38.7%) placebo subjects had rCDI (P < 0.001). Of all recurrence events in the study population, 16/47 (34.0%) were observed within 1 week; 30/47 (63.8%) within 2 weeks; and 34/47 (72.3%) within 4 weeks after randomization, highlighting the rapid onset of recurrence. On the other hand, 12/47 (25.5%) recurrences occurred between 4 and 12 weeks, highlighting late onset of recurrence in a subset of patients (Table). Significantly lower rates of recurrence in patients on SER-109 compared to placebo was maintained throughout the 24-week follow-up (Figure). Time of rCDI K-M Plot Conclusion SER-109, an investigational oral microbiome therapeutic, maintained significant efficacy in reducing rCDI vs placebo through 24 weeks. About two-thirds of all recurrences occurred within 14 days of antibiotic completion highlighting the need for rapid repair of the disrupted microbiome. However, the significant number of late recurrences in the placebo arm also highlights that rCDI trials limited to 4 weeks of follow-up after treatment completion may underestimate recurrences. Disclosures Thomas J. Louie, MD, Artugen (Advisor or Review Panel member)Crestone (Consultant, Grant/Research Support)Da Volterra (Advisor or Review Panel member)Finch Therapeutics (Grant/Research Support, Advisor or Review Panel member)MGB Biopharma (Grant/Research Support, Advisor or Review Panel member)Rebiotix (Consultant, Grant/Research Support)Seres Therapeutics (Consultant, Grant/Research Support)Summit PLC (Grant/Research Support)Vedanta (Grant/Research Support, Advisor or Review Panel member) Matthew Sims, MD, PhD, Astra Zeneca (Independent Contractor)Diasorin Molecular (Independent Contractor)Epigenomics Inc (Independent Contractor)Finch (Independent Contractor)Genentech (Independent Contractor)Janssen Pharmaceuticals NV (Independent Contractor)Kinevant Sciences gmBH (Independent Contractor)Leonard-Meron Biosciences (Independent Contractor)Merck and Co (Independent Contractor)OpGen (Independent Contractor)Prenosis (Independent Contractor)Regeneron Pharmaceuticals Inc (Independent Contractor)Seres Therapeutics Inc (Independent Contractor)Shire (Independent Contractor)Summit Therapeutics (Independent Contractor) Richard Nathan, DO, none (Other Financial or Material Support, I am PI on several clinical trials. If you need that information, I would be happy to supply it.) Princy N. Kumar, MD, AMGEN (Other Financial or Material Support, Honoraria)Eli Lilly (Grant/Research Support)Gilead (Grant/Research Support, Shareholder, Other Financial or Material Support, Honoraria)GSK (Grant/Research Support, Shareholder, Other Financial or Material Support, Honoraria)Merck & Co., Inc. (Grant/Research Support, Shareholder, Other Financial or Material Support, Honoraria) Elaine E. Wang, MD, Seres Therapeutics (Employee) Elaine E. Wang, MD, Seres Therapeutics (Employee, Shareholder) Robert Stevens, PharmD, Seres Therapeutics (Employee, Shareholder) Kelly Brady, MS, Seres Therapeutics (Employee, Shareholder) Barbara McGovern, MD, Seres Therapeutics (Employee, Shareholder) Lisa von Moltke, MD, Seres Therapeutics (Employee, Shareholder)

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S77-S78
Author(s):  
Stephanie L Rolsma ◽  
Sandy M Yoder ◽  
Rachel S Nargi ◽  
Eric Brady ◽  
Natalia Jimenez-Truque ◽  
...  

Abstract Background RSV is a major cause of pediatric respiratory disease. Antibodies to the prefusion conformation of the RSV fusion (pre-F) protein are needed for virus neutralization. Methods We measured RSV-specific responses in two groups of children < 3 years of age; subjects with laboratory-confirmed RSV (RSV-infected) or infants born in the period May to September and enrolled prior to their first RSV season (RSV-uninfected). RSV-infected infants had blood samples obtained at 1, 6, 9, and 12 months after infection. RSV-uninfected infants had blood samples obtained at enrollment, at the end of their first RSV season, and 6 months later. A kELISA to measure RSV pre-F-specific antibodies and an RBF assay to identify RSV F-specific B cells were developed. Results 102 subjects were enrolled; 11 were excluded due to missed visits or withdrawal. Of the 65 subjects in the RSV-uninfected group, all were kELISA positive at enrollment, consistent with maternal antibody transfer. 53 subjects had sufficient samples for analysis at multiple time points; 29 became seronegative and 24 remained seropositive. In the seronegative group, the kELISA value decreased rapidly to < 0.25 by 6 months after the RSV season in 27/29 (93%), (Figure 1a). In the persistently seropositive group, all 24 subjects maintained a positive kELISA value, with some developing higher values over time, consistent with asymptomatic infection (Figure 1b). An RBF assay was used to determine whether antibodies were due to persistent maternal antibodies or endogenous production (Figure 2). In the seronegative group, 24/29 (80%) had a negative RBF; in the seropositive group, 23/24 (96%) had a positive RBF during follow-up. There were 26 subjects in the RSV-infected group; 22 had sufficient samples for analysis at multiple time points. All were seropositive by kELISA at one month post-infection with variable kELISA values during follow-up (Figure 3). 17/22 (77%) had a positive RBF, although 4 of the subjects without a positive RBF had indeterminate results at ≥ 1 visit. Figure 1. kELISA values of baseline RSV-negative subjects, by subject age at time of sample. Panel A: Subjects classified as seronegative (n=29). Panel B: Subjects without known RSV classified as persistently seropositive (n=24). Figure 2. Reactive B-cell frequency assay. The first step in the RBF assay is growth of Lymphoblastoid Cell Lines (LCLs), as shown over days 1-3 (Left-Day 1, Middle-Day 2, Right-Day 3, magnification 200X). The cells circled in the figure indicate a single LCL’s growth over time. LCL supernatant is used to detect RSV F-protein specific antibodies using traditional ELISA, resulting in a positive, indeterminate, or negative result. Indeterminate results occur due to a lack of cell viability and/or failure to form LCLs, resulting in failure to exceed an optical density of 5x background. Figure 3. kELISA values of RSV-infected subjects, by subject age at time of sample. First sample was obtained at approximately one month after laboratory-confirmed RSV. Conclusion Assays measuring F-specific immune responses in infants will be critical for RSV vaccine development. A kELISA targeting RSV pre-F epitopes, with an RBF assay targeting RSV F-specific B cells, may allow discrimination for maternal and infant-derived antibodies. Disclosures Isaac Thomsen, MD, MSCI, Horizon Therapeutics (Individual(s) Involved: Self): Consultant James E. Crowe, Jr., MD, Astra Zeneca (Grant/Research Support)IDBiologics (Board Member, Grant/Research Support, Shareholder)Luna Biologics (Consultant)Meissa Vaccines (Advisor or Review Panel member)Takeda Vaccines (Grant/Research Support) Kathryn M. Edwards, MD, Bionet (Individual(s) Involved: Self): Consultant; CDC (Individual(s) Involved: Self): Research Grant or Support; IBM (Individual(s) Involved: Self): Consultant; Merck (Individual(s) Involved: Self): member DSMC, Other Financial or Material Support; Moderna (Individual(s) Involved: Self): member DSMC, Other Financial or Material Support; NIH (Individual(s) Involved: Self): Research Grant or Support; Pfizer (Individual(s) Involved: Self): member DSMC, Other Financial or Material Support; Roche (Individual(s) Involved: Self): member of DSMB, Other Financial or Material Support; Sanofi Pasteur (Individual(s) Involved: Self): member DSMB, Other Financial or Material Support; Sequiras (Individual(s) Involved: Self): Member DSMB, Other Financial or Material Support; X4 Pharmaceuticals (Individual(s) Involved: Self): Consultant Buddy Creech, MD, MPH, Altimmune (Consultant)Astellas (Other Financial or Material Support, Data and Safety Monitoring Committee)Diotheris (Consultant)GSK (Consultant)Horizon (Consultant)Merck (Scientific Research Study Investigator)Premier Healthcare (Advisor or Review Panel member)Vir (Consultant)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S14-S15
Author(s):  
Marcus Pereira ◽  
Carlos Cervera ◽  
Camille Kotton ◽  
Camille Kotton ◽  
Joseph Sasadeusz ◽  
...  

Abstract Background Refractory or resistant (R/R) cytomegalovirus (CMV) infection after hematopoietic cell transplant (HCT) and solid organ transplant (SOT) cause serious, potentially fatal complications; therapeutic options are limited. In a Phase 3 study (NCT02931539), maribavir (MBV) was superior to investigator-assigned therapy (IAT; val/ganciclovir, foscarnet, cidofovir) for CMV clearance (Wk 8) and clearance plus symptom control (Wk 8 through Wk 16) in HCT/SOT recipients with R/R CMV infections. Here we present further study results on efficacy and safety of MBV in the rescue arm. Methods Patients (pts) were stratified and randomized 2:1 to MBV (400 mg/bid) or IAT for 8-wk treatment then 12-wk follow-up. After minimum 3 wks’ treatment, pts in the IAT group meeting criteria (worsening/lack of improvement of CMV infection or failure to achieve viremia clearance plus IAT intolerance) could enter a MBV rescue arm (8-wk treatment, 12-wk follow-up). In the rescue arm, efficacy was evaluated by confirmed CMV viremia clearance (plasma CMV DNA < 137 IU/mL in 2 consecutive tests ≥ 5 days apart) at end of Wk 8 and confirmed clearance with symptom control at Wk 8 through Wk 16. Safety was assessed. Results A total of 352 pts were randomized (MBV: 235, IAT: 117, randomized set). Confirmed CMV viremia clearance at Wk 8 was achieved in 131 (55.7%) and 28 (23.9%) pts, respectively, in the randomized set. Having met criteria, 22 (18.8%) pts entered the MBV rescue arm; at entry, 6 (27.3%) pts had developed neutropenia and 9 (40.9%) had increased serum creatinine (Table 1). At Wk 8 of rescue therapy, 11 (50.0%) pts achieved confirmed CMV viremia clearance; 6 (27.3%) pts had CMV clearance with symptom control at Wk 8 maintained through Wk 16 (Table 2). All 22 pts reported treatment-emergent adverse events (TEAEs; Table 3); most common TEAEs of special interest were nausea, vomiting, and diarrhea (54.5%), and taste disturbance (50.0%). Neutropenia and acute kidney injury TEAEs were reported by 0 and 3 pts in the rescue arm, respectively. Table 1. Summary of patients from IAT-randomized group meeting criteria for entry into MBV rescue arm* Table 2. Patients achieving confirmed CMV viremia clearance at end of Wk 8 (end of treatment) or achieving confirmed CMV viremia clearance and symptom control at end of Wk 8 maintained through Wk 16 Table 3. Treatment-emergent adverse events during the on-rescue observation period Conclusion Rescue arm data show MBV was efficacious for R/R CMV infection in HCT/SOT recipients inadequately responding to IAT with/without intolerance and had a similar safety profile to that reported for pts in the randomized MBV group. Disclosures Marcus Pereira, MD, Hologic (Scientific Research Study Investigator)Merck (Scientific Research Study Investigator)Takeda (Scientific Research Study Investigator, Advisor or Review Panel member) Carlos Cervera, MD, PhD, Avir Pharma (Consultant, Advisor or Review Panel member)Lilly (Consultant, Advisor or Review Panel member)Merck (Consultant, Advisor or Review Panel member, Research Grant or Support)Sunovion (Consultant, Advisor or Review Panel member)Takeda (Consultant, Advisor or Review Panel member)Veritas Pharma (Consultant, Advisor or Review Panel member) Camille Kotton, MD, Shire/Takeda (Advisor or Review Panel member) Camille Kotton, MD, UpToDate (Individual(s) Involved: Self): I write chapters on zoonoses for UpToDate., Independent Contractor Joseph Sasadeusz, MBBS, PhD, Abbvie (Grant/Research Support, Other Financial or Material Support, Consulting fee: speaker)Gilead (Other Financial or Material Support, Speaker)Merck (Grant/Research Support, Consulting fee: speaker)Takeda (Grant/Research Support) Jingyang Wu, MS, Shire Human Genetic Therapies, Inc., a Takeda company (Employee, Other Financial or Material Support, Holds stock/stock options) Martha Fournier, MD, Shire Human Genetic Therapies, Inc., a Takeda company (Employee, Other Financial or Material Support, Holds stock/stock options)Shire ViroPharma, a Takeda company (Other Financial or Material Support, This study was funded by Shire ViroPharma, a Takeda company)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S812-S813
Author(s):  
Timothy J Straub ◽  
Liyang Diao ◽  
Christopher Ford ◽  
Matthew Sims ◽  
Thomas J Louie ◽  
...  

Abstract Background The gastrointestinal microbiota is the first line of defense against colonization with antimicrobial resistant (AR) bacteria, particularly in vulnerable hosts with frequent antibiotic exposure. In a double-blind Phase 3 trial of rCDI patients, SER-109, an orally formulated consortia of purified Firmicutes spores, was superior to placebo in reducing CDI recurrence at week 8 post clinical resolution on standard-of-care (SoC) antibiotics. Overall recurrence rates were lower in SER-109 vs placebo (12.4% vs 39.8%, respectively) relative risk, 0.32 [95% CI, 0.18–0.58; p< 0.001 for RR< 1.0; p< 0.001 for RR< 0.833]. This is a post-hoc analysis examining the impact of SER-109 on antimicrobial resistance genes (ARGs) abundance in the intestinal microbiota compared to placebo. Methods Subjects with rCDI received SoC antibiotics, then were randomized 1:1 to SER-109 or placebo at baseline. Of 182 subjects, 140 who had paired stool samples at baseline and 1-week post-treatment were included in this analysis. ARG abundances and taxonomic profiles were generated from whole metagenomic shotgun sequencing. t-tests were used to compare changes in ARG abundance from baseline; mixed linear models were used to associate ARG and taxon abundances across time points. Results ARG abundance was reduced overall by week 1, with a significantly greater decrease in SER-109 subjects vs. placebo at week 1 (Fig. 1). Proteobacteria relative abundance were positively correlated with ARG abundance across all samples (Fig. 2), with the Enterobacteriaceae family associated with the abundance of 95 ARGs (all p < 0.05). Enterococcaceae relative abundance was associated with glycopeptide AR abundance (p < 0.001). At week 1, Proteobacteria relative abundance was significantly decreased from baseline in SER-109 subjects vs. placebo (p < 0.001). Enterobacteriaceae and Enterococcaceae relative abundances were also decreased from baseline in SER-109 subjects vs. placebo (p < 0.001 and p = 0.007, respectively). Figure 1. Significant reduction in ARG abundance at week 1 from baseline in SER-109 treatment compared to placebo. Figure 2. Total ARG abundance is associated with the relative abundance of Proteobacteria in SER-109 and placebo subjects at baseline and week 1. Conclusion SER-109 was associated with significantly greater reduction of ARGs and AR bacteria abundances compared to placebo at 1 week post treatment. These findings support a potential role of microbiome therapeutics in rapid decolonization of AR bacteria with implications for infection prevention. Disclosures Timothy J. Straub, MS, Seres Therapeutics (Employee) Liyang Diao, PhD, Seres Therapeutics (Employee) Christopher Ford, PhD, Seres Therapeutics (Employee, Shareholder) Matthew Sims, MD, PhD, Astra Zeneca (Independent Contractor)Diasorin Molecular (Independent Contractor)Epigenomics Inc (Independent Contractor)Finch (Independent Contractor)Genentech (Independent Contractor)Janssen Pharmaceuticals NV (Independent Contractor)Kinevant Sciences gmBH (Independent Contractor)Leonard-Meron Biosciences (Independent Contractor)Merck and Co (Independent Contractor)OpGen (Independent Contractor)Prenosis (Independent Contractor)Regeneron Pharmaceuticals Inc (Independent Contractor)Seres Therapeutics Inc (Independent Contractor)Shire (Independent Contractor)Summit Therapeutics (Independent Contractor) Thomas J. Louie, MD, Artugen (Advisor or Review Panel member)Crestone (Consultant, Grant/Research Support)Da Volterra (Advisor or Review Panel member)Finch Therapeutics (Grant/Research Support, Advisor or Review Panel member)MGB Biopharma (Grant/Research Support, Advisor or Review Panel member)Rebiotix (Consultant, Grant/Research Support)Seres Therapeutics (Consultant, Grant/Research Support)Summit PLC (Grant/Research Support)Vedanta (Grant/Research Support, Advisor or Review Panel member) Colleen S. Kraft, MD, MSc, Rebiotix (Individual(s) Involved: Self): Advisor or Review Panel member Stuart H. Cohen, MD, Seres (Research Grant or Support) Stuart H. Cohen, MD, Nothing to disclose Mary-Jane Lombardo, PhD, Seres Therapeutics (Employee, Shareholder) Barbara McGovern, MD, Seres Therapeutics (Employee, Shareholder) Lisa von Moltke, MD, Seres Therapeutics (Employee, Shareholder) Matt Henn, PhD, Seres Therapeutics (Employee, Shareholder)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S420-S420
Author(s):  
Stuart H Cohen ◽  
Thomas J Louie ◽  
Matthew Sims ◽  
John Pullman ◽  
Elaine E Wang ◽  
...  

Abstract Background Several demographic and clinical characteristics, including age, sex, medication use and presence of comorbid conditions are considered risk factors for recurrent CDI (rCDI). We examined the efficacy of an investigational purified oral microbiome therapeutic, SER-109, versus placebo in an exploratory analysis of subgroups of patients with risk factors for recurrence who enrolled in ECOSPOR III, a double-blind, placebo controlled trial. Forest Plot of Relative Risks for Recurrence at Week 8 for Selected Baseline Characteristics in the ITT population Methods Patients with ≥ 3 CDI episodes were treated with SER-109 or placebo (four capsules daily for three days) following standard treatment of CDI. The primary efficacy objective was to demonstrate superiority of SER-109 versus placebo in reducing rCDI up to 8 weeks after treatment. In this exploratory analysis, we analyzed the rate of CDI recurrence among SER-109 treated subjects compared to placebo in subgroups defined by rCDI baseline risk factors: proton-pump inhibitor use, number of CDI recurrences, prior FMT history, presence of comorbid conditions and exposure to non-CDI antibiotics after dosing. We also analyzed the rate of CDI recurrence among SER-109 treated subjects by age (≥ 65 and ≤ 65) and gender, which were pre-specified. Results Of 281 patients screened,182 were enrolled. Overall recurrence rates were lower in SER-109 treated patients compared to placebo (12.4% vs 39.8%, respectively); relative risk (RR), 0.32 [95% CI, 0.18-0.58; P< 0.001 for RR< 1.0:P< 0.001 for RR< 0.833]. Co-morbidities including diabetes, renal disease, malignancy, cardiac disease, COPD/asthma, colitis, or immunocompromised status were observed in most patients in the overall study population; 33.5%, 32.4% and 34.1% had 0, 1, or ≥ 2 comorbidities. SER-109 was consistently observed to show greater benefit than placebo in reducing CDI recurrence in all subgroups regardless of the presence or absence of the rCDI risk factor (Fig 1). Conclusion Regardless of risk factor status, SER-109 reduced recurrence of CDI compared to placebo. Most subjects in ECOSPOR III had co-morbidities consistent with the broad inclusion criteria in this Phase 3 trial. Despite a high proportion of patients with co-morbidities in ECOSPOR III, SER-109 significantly reduced the risk of recurrence compared to placebo. Disclosures Stuart H. Cohen, MD, Seres (Research Grant or Support) Thomas J. Louie, MD, Artugen (Advisor or Review Panel member)Crestone (Consultant, Grant/Research Support)Da Volterra (Advisor or Review Panel member)Finch Therapeutics (Grant/Research Support, Advisor or Review Panel member)MGB Biopharma (Grant/Research Support, Advisor or Review Panel member)Rebiotix (Consultant, Grant/Research Support)Seres Therapeutics (Consultant, Grant/Research Support)Summit PLC (Grant/Research Support)Vedanta (Grant/Research Support, Advisor or Review Panel member) Matthew Sims, MD, PhD, Astra Zeneca (Independent Contractor)Diasorin Molecular (Independent Contractor)Epigenomics Inc (Independent Contractor)Finch (Independent Contractor)Genentech (Independent Contractor)Janssen Pharmaceuticals NV (Independent Contractor)Kinevant Sciences gmBH (Independent Contractor)Leonard-Meron Biosciences (Independent Contractor)Merck and Co (Independent Contractor)OpGen (Independent Contractor)Prenosis (Independent Contractor)Regeneron Pharmaceuticals Inc (Independent Contractor)Seres Therapeutics Inc (Independent Contractor)Shire (Independent Contractor)Summit Therapeutics (Independent Contractor) Elaine E. Wang, MD, Seres Therapeutics (Employee) Elaine E. Wang, MD, Seres Therapeutics (Employee, Shareholder) Barbara McGovern, MD, Seres Therapeutics (Employee, Shareholder) Kelly Brady, MS, Seres Therapeutics (Employee, Shareholder) Lisa von Moltke, MD, Seres Therapeutics (Employee, Shareholder)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S582-S583
Author(s):  
Eleni Karantoni ◽  
Yiqi Su ◽  
Anat Stern ◽  
Phaedon D Zavras ◽  
Sergio Giralt ◽  
...  

Abstract Background The epidemiology of CMV end-organ disease (EOD) after Hematopoietic Cell Transplant (HCT) in the era of preemptive therapy (PET) is defined. In contrast, less data exists on refractory and/or resistant (R/R) CMV. We report on 1) the incidence; 2) risk factors and outcomes of R/R CMV by 1-year post HCT. Methods Retrospective review of 167 CMV seropositive (R+) recipients of first marrow or peripheral blood HCT from 1/2014 - 12/2017 managed by PET. Refractory CMV was defined as failure to achieve >1 log10 decrease in CMV viral load (VL) and having VL >1,000 IU/mL after ≥14 day of PET. Resistant CMV required genotypic confirmation of resistance mutation(s) in UL54 and/or UL97 genes. End organ disease (EOD) was defined by standard criteria. Patients (pts) were followed through 1-year post HCT and were categorized in two mutually exclusive groups as R/R and no R/R. Demographics, clinical characteristics and outcomes were extracted from medical records and hospital databases. Univariable and multivariable logistic models were used to identify risk factors for R/R CMV. Results Of 167 PET recipients, 91 (54.5%) received ex vivo T cell depleted (TCD) HCT; 40 (24.0%) had mismatched donor; and 26 (15.6%) had multiple myeloma. 66/167 (39.5%) pts developed refractory CMV (6 pts also had resistant CMV). Time from HCT to CMV viremia was shorter in R/R group: median (IQR) 21.5 (17.2-27.8) days compared to no R/R group: 26 (19-32) days (p=0.031). Maximum VL was higher for R/R compared to no R/R: median (IQR) 9,118 (2,849-18,456) and 868 (474-1,908), respectively (p< 0.001). In multivariable model, risk factors for R/R included TCD HCT (p< 0.0001) and higher VL at PET initiation (p=0.0002). In contrast, CMV seropositive donor (p=0.035) was protective (Figure 1). CMV EOD developed in 28.2% of R/R and 16.2% of no R/R groups (p=0.085) (Figure 2). Overall survival at 1 year was 59.1% for R/R compared to 83.1% for no R/R group (p=0.00027) (Figure 3). Figure 1. Adjusted odds ratio (OR) and 95% confidence interval (CI) from multivariable model evaluating risk factors of refractory/resistant (R/R) CMV. Figure 2. Cumulative incidence curves of CMV end-organ disease (EOD) at 1-year post HCT Figure 3. Kaplan-Meier survival curves of overall survival (OS) at 1-year post HCT Conclusion 1) Refractory and/or resistant CMV occurred in 39,5% of PET recipients. 2) T-cell depletion and higher CMV VL at PET initiation were risk factors for R/R CMV in multivariable models. 3) R/R CMV was associated with more EOD and worse overall survival. Disclosures Sergio Giralt, MD, Amgen (Advisor or Review Panel member, Research Grant or Support, Served an advisory board for Amgen, Actinuum, Celgene, Johnson & Johnson, JAZZ pharmaceutical, Takeda, Novartis, KITE, and Spectrum pharma and has received research support from Amgen, Actinuum, Celgene, Johnson & Johnson, and Miltenyi, Takeda.) Miguel-Angel Perales, MD, Abbvie (Other Financial or Material Support, Honoraria from Abbvie, Bellicum, Celgene, Bristol-Myers Squibb, Incyte, Merck, Novartis, Nektar Therapeutics, Omeros, and Takeda.)ASTCT (Other Financial or Material Support, Volunteer member of the Board of Directors of American Society for Transplantation and Cellular Therapy (ASTCT), Be The Match (National Marrow Donor Program, NMDP), and the CIBMTR Cellular Immunotherapy Data Resource (CIDR) Committee)Cidara Therapeutics (Advisor or Review Panel member, Other Financial or Material Support, Serve on DSMBs for Cidara Therapeutics, Servier and Medigene, and the scientific advisory boards of MolMed and NexImmune.)Kite/Gilead (Research Grant or Support, Other Financial or Material Support, Received research support for clinical trials from Incyte, Kite/Gilead and Miltenyi Biotec.) Genovefa Papanicolaou, MD, Chimerix (Research Grant or Support)Merck&Co (Research Grant or Support, Investigator and received funding and consulting fees from Merck, Chimerix, Shire and Astellas)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S806-S807
Author(s):  
Joshua A Hill ◽  
Roger Paredes ◽  
Carlos Vaca ◽  
Jorge Mera ◽  
Brandon J Webb ◽  
...  

Abstract Background Remdesivir (RDV) is a potent nucleotide prodrug inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase that has demonstrated efficacy in the treatment of patients hospitalized with moderate to severe COVID-19. This Phase 3 (GS-US-540–9012) double-blind, placebo-controlled study compared the efficacy and safety of 3 days of RDV to standard of care in non-hospitalized, high-risk participants with confirmed COVID-19. Table 1. COVID-19 related hospitalization or death, COVID-19 related medically attended visits or death, and Treatment Emergent Adverse Events Methods Participants were randomly assigned 1:1 to receive intravenous (IV) RDV (200 mg on day 1, 100 mg on days 2 to 3) or placebo. The primary efficacy endpoint was composite COVID-19 hospitalization or all-cause death by day 28 and compared using Cox proportional hazards model with baseline stratification factors as covariates. The primary safety endpoint was proportion of participants with treatment-emergent adverse events. Study enrollment was terminated early for administrative reasons in light of the evolving pandemic. Results 562 patients underwent randomization and started their assigned treatment (279, RDV; 283, placebo). Baseline demographics and characteristics were balanced across arms. Overall, 52% were male, 44% were Hispanic/Latino ethnicity and 30% were ≥ 60 years old. The most common comorbidities were diabetes mellitus (62%), obesity (56%; median BMI, 30.7), and hypertension (48%). Median baseline SARS-CoV-2 RNA nasopharyngeal viral load was 6.2 log10 copies/mL. Treatment with RDV significantly reduced COVID-19 hospitalization or all-cause death by day 28 (HR, 0.13; 95% CI, 0.03 – 0.59; p = 0.008; Table 1) compared to placebo. Participants receiving RDV also had significantly lower risk for COVID-19-related medically attended visits or all-cause death by day 28 compared to placebo (HR, 0.19; 95% CI, 0.07 – 0.56; p = 0.002; Table 1). No deaths occurred in either arm by day 28. There was no difference between arms in time-weighted average change in nasopharyngeal viral loads from baseline up to day 7. The proportion of patients with AEs was similar between arms (Table 1); the most common AEs in the RDV arm were nausea (11%), headache (6%), and diarrhea (4%). Conclusion A 3-day course of IV RDV was safe, well tolerated and highly effective at preventing COVID-19 related hospitalization or death in high-risk non-hospitalized COVID-19 patients. Disclosures Joshua A. Hill, MD, Allogene (Individual(s) Involved: Self): Consultant; Allovir (Individual(s) Involved: Self): Consultant, Grant/Research Support; Amplyx (Individual(s) Involved: Self): Consultant; Covance/CSL (Individual(s) Involved: Self): Consultant; CRISPR (Individual(s) Involved: Self): Consultant; Gilead (Individual(s) Involved: Self): Consultant, Grant/Research Support; Karius: Grant/Research Support, Scientific Research Study Investigator; Medscape (Individual(s) Involved: Self): Consultant; Octapharma (Individual(s) Involved: Self): Consultant; OptumHealth (Individual(s) Involved: Self): Consultant; Takeda (Individual(s) Involved: Self): Consultant, Grant/Research Support, Scientific Research Study Investigator Roger Paredes, MD, PhD, Gilead Sciences, Inc (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member) Carlos Vaca, MD, Gilead Sciences, Inc (Scientific Research Study Investigator) Jorge Mera, MD, Gilead Sciences, Inc (Consultant, Study Investigator (payment to employer not self)) Gilberto Perez, MD, Gilead Sciences, Inc (Scientific Research Study Investigator) Godson Oguchi, MD, Gilead Sciences, Inc (Scientific Research Study Investigator) Pablo Ryan, MD PhD, Gilead Sciences, Inc (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member) Jan Gerstoft, MD, Gilead Sciences, Inc (Other Financial or Material Support, Study Investigator (payment to employer)) Michael Brown, FRCP PhD, Gilead Sciences, Inc (Scientific Research Study Investigator, Investigator for numerous remdesivir trials (employer received compensation)) Morgan Katz, MD, MHS, Roche (Individual(s) Involved: Self): Advisor or Review Panel member; Skinclique (Individual(s) Involved: Self): Consultant Gregory Camus, PhD, Gilead Sciences (Employee, Shareholder) Danielle P. Porter, PhD, Gilead Sciences (Employee, Shareholder) Robert H. Hyland, DPhil, Gilead Sciences, Inc (Shareholder, Other Financial or Material Support, Employee during the conduct of this trial) Shuguang Chen, PhD, Gilead Sciences, Inc (Employee, Shareholder) Kavita Juneja, MD, Gilead Sciences, Inc (Employee) Anu Osinusi, MD, Gilead Sciences, Inc (Employee, Shareholder) Frank Duff, MD, Gilead Sciences, Inc (Employee, Shareholder) Robert L. Gottlieb, MD, Eli Lilly (Scientific Research Study Investigator, Advisor or Review Panel member)Gilead Sciences (Scientific Research Study Investigator, Advisor or Review Panel member, Other Financial or Material Support, Gift in kind to Baylor Scott and White Research Institute for NCT03383419)GSK (Advisor or Review Panel member)Johnson and Johnson (Scientific Research Study Investigator)Kinevant (Scientific Research Study Investigator)Roche/Genentech (Scientific Research Study Investigator)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S681-S682
Author(s):  
Leila C Sahni ◽  
Eric A Naioti ◽  
Samantha M Olson ◽  
Angela P Campbell ◽  
Marian G Michaels ◽  
...  

Abstract Background Adult studies have demonstrated intra-season declines in influenza vaccine effectiveness (VE) with increasing time since vaccination; however, data in children are limited. Methods We conducted a prospective, test-negative study of children ages 6 months through 17 years hospitalized with acute respiratory illness at 7 pediatric medical centers each season in the New Vaccine Surveillance Network during the 2015-2016 through 2019-2020 influenza seasons. Cases were children with an influenza-positive molecular test; controls were influenza-negative children. Controls were matched to cases by illness onset date using 3:1 nearest neighbor matching. We estimated VE [100% x (1 – odds ratio)] by comparing the odds of receipt of ≥ 1 dose of influenza vaccine ≥ 14 days before the onset of illness that resulted in hospitalization among influenza-positive children to influenza-negative children. Changes in VE over time between vaccination date and illness onset date during each season were estimated using multivariable logistic regression models. Results Of 8,430 hospitalized children (4,781 [57%] male; median age 2.4 years), 4,653 (55%) received ≥ 1 dose of influenza vaccine. On average, 48% and 85% of children were vaccinated by the end of October and December, respectively. Influenza-positive cases (n=1,000; 12%) were less likely to be vaccinated than influenza-negative controls (39% vs. 61%, p< 0.001) and overall VE against hospitalization was 53% (95% CI: 46%, 60%). Pooling data across 5 seasons, the odds of any influenza-associated hospitalization increased 0.96% (95% CI: -0.76%, 2.71%) per week with a corresponding weekly decrease in VE of 0.45% (p=0.275). Odds of hospitalization with time since vaccination increased 0.66% (95% CI: -0.76%, 2.71%) per week in children ≤ 8 years (n=3,084) and 2.16% (95% CI: -1.68%, 6.15%) per week in children 9-17 years (n=771). No significant differences were observed by virus subtype or lineage. Figure 1. Declines in influenza VE over time from 2015-2016 through 2019-2020, overall (a) and by age group (b: ≤ 8 years; c: 9-17 years) Conclusion We observed minimal intra-season declines in VE against influenza-associated hospitalization in U.S. children. Vaccination following Advisory Committee on Immunization Practices guidelines and current timing of vaccine receipt is the best strategy for prevention of influenza-associated hospitalization in children. Disclosures Marian G. Michaels, MD, MPH, Viracor (Grant/Research Support, performs assay for research study no financial support) John V. Williams, MD, GlaxoSmithKline (Advisor or Review Panel member, Independent Data Monitoring Committee)Quidel (Advisor or Review Panel member, Scientific Advisory Board) Elizabeth P. Schlaudecker, MD, MPH, Pfizer (Grant/Research Support)Sanofi Pasteur (Advisor or Review Panel member) Natasha B. Halasa, MD, MPH, Genentech (Other Financial or Material Support, I receive an honorarium for lectures - it’s a education grant, supported by genetech)Quidel (Grant/Research Support, Other Financial or Material Support, Donation of supplies/kits)Sanofi (Grant/Research Support, Other Financial or Material Support, HAI/NAI testing) Natasha B. Halasa, MD, MPH, Genentech (Individual(s) Involved: Self): I receive an honorarium for lectures - it’s a education grant, supported by genetech, Other Financial or Material Support, Other Financial or Material Support; Sanofi (Individual(s) Involved: Self): Grant/Research Support, Research Grant or Support Janet A. Englund, MD, AstraZeneca (Consultant, Grant/Research Support)GlaxoSmithKline (Research Grant or Support)Meissa Vaccines (Consultant)Pfizer (Research Grant or Support)Sanofi Pasteur (Consultant)Teva Pharmaceuticals (Consultant) Christopher J. Harrison, MD, GSK (Grant/Research Support)Merck (Grant/Research Support)Pfizer (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Flor M. Munoz, MD, Biocryst (Scientific Research Study Investigator)Gilead (Scientific Research Study Investigator)Meissa (Other Financial or Material Support, DSMB)Moderna (Scientific Research Study Investigator, Other Financial or Material Support, DSMB)Pfizer (Scientific Research Study Investigator, Other Financial or Material Support, DSMB)Virometix (Other Financial or Material Support, DSMB)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S93-S93
Author(s):  
Danielle A Rankin ◽  
Andrew Speaker ◽  
Ariana Perez ◽  
Zaid Haddadin ◽  
Varvara Probst ◽  
...  

Abstract Background Sharp declines in influenza and respiratory syncytial virus (RSV) circulation across the U.S. have been described during the pandemic in temporal association with community mitigation for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We aimed to determine relative frequencies of rhinovirus/enterovirus (RV/EV) and other respiratory viruses in children presenting to emergency departments or hospitalized with acute respiratory illness (ARI) prior to and during the COVID-19 pandemic. Methods We conducted a multi-center active prospective ARI surveillance study in children as part of the New Vaccine Surveillance Network (NVSN) from December 2016 through January 2021. Molecular testing for RV/EV, RSV, influenza, and other respiratory viruses [i.e., human metapneumovirus, parainfluenza virus (Types 1-4), and adenovirus] were performed on specimens collected from children enrolled children. Cumulative percent positivity of each virus type during March 2020–January 2021 was compared from March-January in the prior seasons (2017-2018, 2018-2019, 2019-2020) using Pearson’s chi-squared. Data are provisional. Results Among 69,403 eligible children, 37,676 (54%) were enrolled and tested for respiratory viruses. The number of both eligible and enrolled children declined in early 2020 (Figure 1), but 4,691 children (52% of eligible) were enrolled and tested during March 2020-January 2021. From March 2020-January 2021, the overall percentage of enrolled children with respiratory testing who had detectable RV/EV was similar compared to the same time period in 2017-2018 and 2019-2020 (Figure 1, Table 1). In contrast, the percent positivity of RSV, influenza, and other respiratory viruses combined declined compared to prior years, (p< 0.001, Figure 1, Table 1). Figure 1. Percentage of Viral Detection Among Enrolled Children Who Received Respiratory Testing, New Vaccine Surveillance Network (NVSN), United States, December 2016 – January 2021 Table 1. Percent of Respiratory Viruses Circulating in March 2020– January 2021, compared to March-January in Prior Years, New Vaccine Surveillance Network (NVSN), United States, March 2017 – January 2021 Conclusion During 2020, RV/EV continued to circulate among children receiving care for ARI despite abrupt declines in other respiratory viruses within this population. These findings warrant further studies to understand virologic, behavioral, biological, and/or environmental factors associated with this continued RV/EV circulation. Disclosures Jennifer E. Schuster, MD, Merck, Sharpe, and Dohme (Individual(s) Involved: Self): Grant/Research Support Marian G. Michaels, MD, MPH, Viracor (Grant/Research Support, performs assay for research study no financial support) John V. Williams, MD, GlaxoSmithKline (Advisor or Review Panel member, Independent Data Monitoring Committee)Quidel (Advisor or Review Panel member, Scientific Advisory Board) Elizabeth P. Schlaudecker, MD, MPH, Pfizer (Grant/Research Support)Sanofi Pasteur (Advisor or Review Panel member) Christopher J. Harrison, MD, GSK (Grant/Research Support)Merck (Grant/Research Support)Pfizer (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Janet A. Englund, MD, AstraZeneca (Consultant, Grant/Research Support)GlaxoSmithKline (Research Grant or Support)Meissa Vaccines (Consultant)Pfizer (Research Grant or Support)Sanofi Pasteur (Consultant)Teva Pharmaceuticals (Consultant) Claire Midgley, PhD, Nothing to disclose Natasha B. Halasa, MD, MPH, Genentech (Other Financial or Material Support, I receive an honorarium for lectures - it’s a education grant, supported by genetech)Quidel (Grant/Research Support, Other Financial or Material Support, Donation of supplies/kits)Sanofi (Grant/Research Support, Other Financial or Material Support, HAI/NAI testing) Natasha B. Halasa, MD, MPH, Genentech (Individual(s) Involved: Self): I receive an honorarium for lectures - it’s a education grant, supported by genetech, Other Financial or Material Support, Other Financial or Material Support; Sanofi (Individual(s) Involved: Self): Grant/Research Support, Research Grant or Support


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S504-S504
Author(s):  
Pengxiang Li ◽  
Vrushabh P Ladage ◽  
Jianbin Mao ◽  
Girish Prajapati ◽  
Dovie L Watson ◽  
...  

Abstract Background Among the 1.2 million people living with HIV (PLWH) in the U.S., many are covered by Medicare, a federally funded health insurance program for elderly (≥65 years) and disabled (< 65 years) individuals. Medicare has emerged as a major source of HIV care for PLWH. Given limited research in this population, a better understanding of patient characteristics, comorbidities, and comedication use among PLWH in the Medicare program is needed to help optimize clinical care. Methods A retrospective claims analysis of a national cross-sectional sample of fee-for-service (FFS) Medicare beneficiaries with continuous medical and prescription coverage in 2018 was conducted using 100% Medicare administrative claims. The PLWH group included individuals with ≥1 HIV diagnosis code in medical claims and ≥1 pharmacy claim for an anchor antiretroviral (ARV) drug (i.e., NNRTI, PI or InSTI) in 2018. The comparison group included a random sample of Medicare beneficiaries without HIV (PLWoH). Sociodemographic characteristics, comorbidities, and medication use were compared between PLWH and PLWoH. Results The study sample included 86,856 PLWH and 552,645 PLWoH. PLWH were more likely to be younger (mean age: 57.4 vs 71.1 years and < 65 years: 72% vs 18%), male (75% vs 42%), Black (42% vs 10%), eligible for Medicare due to disability (83% vs 27%) and receiving full low-income subsidies (77% vs 31%); all p< 0.001. Prevalence of >3 comorbidities was high in PLWH (70.2%) and only slightly lower than in PLWoH (71.7% p< 0.001). Prevalence of neuropsychiatric conditions, chronic kidney disease, liver disease, COPD, hepatitis B, and hepatitis C were higher in PLWH (Figure 1). The mean hierarchical condition categories risk score was higher in PLWH vs PLWoH (1.81 vs. 1.32; p< 0.001). On average, polypharmacy was higher among PLWH vs PLWoH (annual number of unique medications: 12.6 vs. 9.4 for all drugs and 10.3 vs. 9.4 for non-ARV drugs, both p< 0.001). Figure 1. Percentage of PLWH and PLWoH with multimorbidity and selected comorbid conditions. Abbreviations: COPD=chronic obstructive pulmonary disease; GI=gastrointestinal; PLWH=people living with HIV; PLWoH=people living without HIV All p-values <0.001 except GI Disorders (p=0.14). Conclusion In the Medicare FFS population, multimorbidity and polypharmacy were highly prevalent in PLWH despite their substantially younger age compared to PLWoH. Our findings highlight the need to consider comorbidities and comedications in HIV management including ARV regimens to minimize medication burden and drug interactions, which might improve clinical outcomes. Disclosures Pengxiang Li, PhD, Avalon Health Economics LLC (Consultant)COVIA Health Solutions (Consultant)Healthstatistics, LLC (Consultant) Jianbin Mao, PhD, Merck (Employee)Merck (Shareholder) Girish Prajapati, M.B.B.S., MPH , Merck & Co., Inc. (Employee, Shareholder) Robert Gross, MD, MSCE, Pfizer (Other Financial or Material Support, Serve on DSMB for drug unrelated to HIV) Jalpa A. Doshi, PhD, Acadia (Consultant, Advisor or Review Panel member)Allergan (Advisor or Review Panel member)Biogen (Grant/Research Support)Boehringer Ingelheim (Other Financial or Material Support, Scientific lecture)Catabasis (Consultant)Humana (Grant/Research Support)Janssen, Inc. (Consultant, Grant/Research Support)MeiraGTX (Consultant)Merck (Grant/Research Support, Advisor or Review Panel member)Novartis (Grant/Research Support)Otsuka (Advisor or Review Panel member)Regeneron (Grant/Research Support)SAGE Therapeutics (Consultant)Sanofi (Grant/Research Support)Shire (Advisor or Review Panel member)The Medicines Company (Advisor or Review Panel member)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S343-S344
Author(s):  
Matthew T Clark ◽  
Danielle A Rankin ◽  
Anna E Patrick ◽  
Alisa Gotte ◽  
Alison Herndon ◽  
...  

Abstract Background Multi-system inflammatory syndrome in children (MIS-C) is a rare consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). MIS-C shares features with common infectious and inflammatory syndromes and differentiation early in the course is difficult. Identification of early features specific to MIS-C may lead to faster diagnosis and treatment. We aimed to determine clinical, laboratory, and cardiac features distinguishing MIS-C patients within the first 24 hours of admission to the hospital from those who present with similar features but ultimately diagnosed with an alternative etiology. Methods We performed retrospective chart reviews of children (0-20 years) who were admitted to Vanderbilt Children’s Hospital and evaluated under our institutional MIS-C algorithm between June 10, 2020-April 8, 2021. Subjects were identified by review of infectious disease (ID) consults during the study period as all children with possible MIS-C require an ID consult per our institutional algorithm. Clinical, lab, and cardiac characteristics were compared between children with and without MIS-C. The diagnosis of MIS-C was determined by the treating team and available consultants. P-values were calculated using two-sample t-tests allowing unequal variances for continuous and Pearson’s chi-squared test for categorical variables, alpha set at < 0.05. Results There were 128 children admitted with concern for MIS-C. Of these, 45 (35.2%) were diagnosed with MIS-C and 83 (64.8%) were not. Patients with MIS-C had significantly higher rates of SARS-CoV-2 exposure, hypotension, conjunctival injection, abdominal pain, and abnormal cardiac exam (Table 1). Laboratory evaluation showed that patients with MIS-C had lower platelet count, lymphocyte count and sodium level, with higher c-reactive protein, fibrinogen, B-type natriuretic peptide, and neutrophil percentage (Table 2). Patients with MIS-C also had lower ejection fraction and were more likely to have abnormal electrocardiogram. Conclusion We identified early features that differed between patients with MIS-C from those without. Development of a diagnostic prediction model based on these early distinguishing features is currently in progress. Disclosures Natasha B. Halasa, MD, MPH, Genentech (Other Financial or Material Support, I receive an honorarium for lectures - it’s a education grant, supported by genetech)Quidel (Grant/Research Support, Other Financial or Material Support, Donation of supplies/kits)Sanofi (Grant/Research Support, Other Financial or Material Support, HAI/NAI testing) Natasha B. Halasa, MD, MPH, Genentech (Individual(s) Involved: Self): I receive an honorarium for lectures - it’s a education grant, supported by genetech, Other Financial or Material Support, Other Financial or Material Support; Sanofi (Individual(s) Involved: Self): Grant/Research Support, Research Grant or Support James A. Connelly, MD, Horizon Therapeutics (Advisor or Review Panel member)X4 Pharmaceuticals (Advisor or Review Panel member)


Sign in / Sign up

Export Citation Format

Share Document