scholarly journals 165. Mycobacterium tuberculosis Produces Molecules That Trigger Nociceptive Neurons to Activate Cough

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S16-S16
Author(s):  
Cody Ruhl ◽  
Lexy Kindt ◽  
Haaris Khan ◽  
Chelsea E Stamm ◽  
Breanna Pasko ◽  
...  

Abstract Background A hallmark symptom of active pulmonary tuberculosis vital for disease transmission is cough. The current paradigm for tuberculosis-related cough is that it results from airway damage or irritation. However, there is limited experimental data to support this theory, and whether Mycobacterium tuberculosis (Mtb) induces cough to facilitate its own transmission has not been explored. The cough reflex is a complex and coordinated event involving both the nervous and musculoskeletal systems initiated by particulate or chemical molecules activating nociceptive neurons, which sense pain or irritation. This activation induces a signaling cascade ultimately resulting in a cough. Respiratory nociceptive neurons innervate the airway of humans and most mammals, and thus are poised to respond to noxious molecules to help protect the lung from damage. Because Mtb is a lung pathogen, cough is a primary mechanism of Mtb transmission, and respiratory nociceptive neurons activate cough, we hypothesized that Mtb produces molecules that stimulate cough, thereby facilitating its spread from infected to uninfected individuals. Methods We used an in vitro neuronal activation bioassay to fractionate, identify, and characterize Mtb cough-inducing molecules. We also measured cough in vivo in response to pure Mtb-derived cough molecules and during Mtb infection using a guinea pig model. Results We found that an acellular organic extract of Mtb triggers and activates nociceptive neurons in vitro with a neuronal response that is as robust as the response to capsaicin, an established nociceptive and cough-inducing molecule. Using analytical chemistry and our neuronal bioassay, we then isolated 2 molecules produced by Mtb that activate nociceptive neurons. Both the organic Mtb extract and purified molecules alone were sufficient to induce cough in a conscious guinea pig cough model. Finally guinea pigs infected with wild-type Mtb cough much more frequently than guinea pigs infected with Mtb strains unable to produce nociceptive molecules. Conclusion We conclude that Mtb produces molecules that activate nociceptive neurons and induce cough. These findings have significant implications for our understanding of Mtb transmission. Disclosures All authors: No reported disclosures.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S33-S33
Author(s):  
Paxton Cruz ◽  
Cody Ruhl ◽  
Michael Shiloh

Abstract Background A hallmark symptom of active pulmonary tuberculosis vital for disease transmission is cough. The current paradigm for tuberculosis-related cough is that it results from airway damage or irritation. However, there is limited experimental data to support this theory, and whether Mycobacterium tuberculosis (Mtb) induces cough to facilitate its own transmission has not been explored. The cough reflex is a complex and coordinated event involving both the nervous and musculoskeletal systems initiated by particulate or chemical molecules activating nociceptive neurons, which sense pain or irritation. This activation induces a signaling cascade ultimately resulting in a cough. Respiratory nociceptive neurons innervate the airway of humans and most mammals and thus are poised to respond to noxious molecules to help protect the lung from damage. Because Mtb is a lung pathogen, cough is a primary mechanism of Mtb transmission, and respiratory nociceptive neurons activate cough, we hypothesized that Mtb produces molecules that stimulate cough thereby facilitating its spread from infected to uninfected individuals. We previously identified a cough molecule produced by Mtb, and in this work characterize its neuronal receptor using genetics, biochemistry, and pharmacology. Methods We used an in vitro neuronal activation bioassay to study Mtb cough-inducing molecules. We also used a biochemical assay to identify the cough receptor. Finally, we used gene silencing, biochemistry, and pharmacologic inhibition to validate and characterize the activity of the newly discovered cough receptor. Results We isolated a complex lipid produced by Mtb that activates nociceptive neurons. Both an organic Mtb extract and the purified molecule alone were sufficient to induce cough in a conscious guinea pig cough model and guinea pigs infected with wild-type Mtb cough much more frequently than guinea pigs infected with Mtb strains unable to produce nociceptive molecules. Using genetics, biochemistry, and pharmacology techniques, we identified and validated a cough receptor for the Mtb lipid expressed on nociceptive neurons. Conclusion We conclude that Mtb produces a molecule that activates nociceptive neurons and induces cough through a specific neuronal receptor. These findings have significant implications for our understanding of Mtb transmission. Disclosures All Authors: No reported Disclosures.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


1977 ◽  
Vol 6 (4) ◽  
pp. 355-371 ◽  
Author(s):  
Zvi H. Marcus ◽  
Yael Shtal ◽  
Gerald Dominique ◽  
Laslo Nebel
Keyword(s):  

1994 ◽  
Vol 179 (3) ◽  
pp. 881-887 ◽  
Author(s):  
P J Jose ◽  
D A Griffiths-Johnson ◽  
P D Collins ◽  
D T Walsh ◽  
R Moqbel ◽  
...  

Eosinophil accumulation is a prominent feature of allergic inflammatory reactions, such as those occurring in the lung of the allergic asthmatic, but the endogenous chemoattractants involved have not been identified. We have investigated this in an established model of allergic inflammation, using in vivo systems both to generate and assay relevant activity. Bronchoalveolar lavage (BAL) fluid was taken from sensitized guinea pigs at intervals after aerosol challenge with ovalbumin. BAL fluid was injected intradermally in unsensitized assay guinea pigs and the accumulation of intravenously injected 111In-eosinophils was measured. Activity was detected at 30 min after allergen challenge, peaking from 3 to 6 h and declining to low levels by 24 h. 3-h BAL fluid was purified using high performance liquid chromatography techniques in conjunction with the skin assay. Microsequencing revealed a novel protein from the C-C branch of the platelet factor 4 superfamily of chemotactic cytokines. The protein, "eotaxin," exhibits homology of 53% with human MCP-1, 44% with guinea pig MCP-1, 31% with human MIP-1 alpha, and 26% with human RANTES. Laser desorption time of flight mass analysis gave four different signals (8.15, 8.38, 8.81, and 9.03 kD), probably reflecting differential O-glycosylation. Eotaxin was highly potent, inducing substantial 111In-eosinophil accumulation at a 1-2 pmol dose in the skin, but did not induce significant 111In-neutrophil accumulation. Eotaxin was a potent stimulator of both guinea pig and human eosinophils in vitro. Human recombinant RANTES, MIP-1 alpha, and MCP-1 were all inactive in inducing 111In-eosinophil accumulation in guinea pig skin; however, evidence was obtained that eotaxin shares a binding site with RANTES on guinea pig eosinophils. This is the first description of a potent eosinophil chemoattractant cytokine generated in vivo and suggests the possibility that similar molecules may be important in the human asthmatic lung.


1962 ◽  
Vol 24 (4) ◽  
pp. 491-NP ◽  
Author(s):  
JANET EVERETT

SUMMARY The direct influence of oestriol and progesterone, and a combination of these hormones, on endometrium of guinea-pigs has been studied in organ culture. Progesterone stimulated the size and number of stromal cells, and provoked slight dilation of uterine glands. The glands were more numerous and widely dilated in the presence of oestriol, and the number and size of stromal cells were even greater than with progesterone alone. A combination of the two hormones led to the simultaneous appearance of synergism—well-preserved epithelium and glands of a secretory nature, and antagonism—there being fewer stromal cells of a smaller size than with either hormone alone. The significance of these results is discussed in relation to the effects of the hormones in vivo. The inhibitory action of progesterone on the appearance of the cystic hyperplasia of the uterine glands provoked by oestriol was noted.


1990 ◽  
Vol 63 (03) ◽  
pp. 459-463 ◽  
Author(s):  
S Wilson ◽  
P Chamberlain ◽  
I Dodd ◽  
A Esmail ◽  
J H Robinson

SummaryA hybrid plasminogen activator consisting of the “A” chain of plasmin linked to the “B” chain of rt-PA was inhibited in vitro in human and guinea pig plasmas 4 to 5-fold more rapidly than its parent activator, two-chain t-PA. Using zymographic and autoradiographic techniques together with the use of immunodepleted plasma the major inhibitor was identified as aIpha-2-antiplasmin. The pharmacokinetic profile of the hybrid in guinea pigs was determined by two different methods: disappearance of fibrinolytic activity and removal of radiolabelled hybrid from the circulation. Fibrinolytic activity was cleared rapidly via inhibitory mechanisms, whilst radiolabelled material was cleared considerably more slowly due to the formation of hybrid-inhibitor complexes. When the active site of the hybrid was reversibly acylated inhibitory mechanisms were evaded and a prolonged pharmacokinetic profile of activity was observed.


Microbiology ◽  
2006 ◽  
Vol 152 (6) ◽  
pp. 1591-1600 ◽  
Author(s):  
Russell K. Karls ◽  
Jeannette Guarner ◽  
David N. McMurray ◽  
Kristin A. Birkness ◽  
Frederick D. Quinn

Secondary sigma factors in bacteria direct transcription of defence regulons in response to specific stresses. To identify which sigma factors in the human respiratory pathogen Mycobacterium tuberculosis are important for adaptive survival in vivo, defined null mutations were created in individual sigma factor genes. In this study, in vitro growth virulence and guinea pig pathology of M. tuberculosis mutants lacking functional sigma factors (SigC, SigF, or SigM) were compared to the parent strain, H37Rv. None of the mutant strains exhibited a growth deficiency in Middlebrook 7H9 broth, nor were any impaired for intracellular replication in the human monocytic macrophage cell-line THP-1. Following low-dose aerosol infection of guinea pigs, however, differences could be detected. While a SigM mutant resulted in lung and spleen granulomas of comparable composition to those found in H37Rv-infected animals, a SigF mutant was partially attenuated, exhibiting necrotic spleen granulomas and ill-defined lung granulomas. SigC mutants exhibited attenuation in the lung and spleen; notably, necrotic granulomas were absent. These data suggest that while SigF may be important for survival in the lung, SigC is likely a key regulator of pathogenesis and adaptive survival in the lung and spleen. Understanding how SigC mediates survival in the host should prove useful in the development of anti-tuberculosis therapies.


Tuberculosis ◽  
2006 ◽  
Vol 86 (6) ◽  
pp. 419-429 ◽  
Author(s):  
Troy A. Skwor ◽  
Shannon Sedberry Allen ◽  
John T. Mackie ◽  
Karen Russell ◽  
Luc R. Berghman ◽  
...  

2017 ◽  
Vol 23 (7) ◽  
pp. 625-637 ◽  
Author(s):  
Georgina Filio-Rodríguez ◽  
Iris Estrada-García ◽  
Patricia Arce-Paredes ◽  
María M Moreno-Altamirano ◽  
Sergio Islas-Trujillo ◽  
...  

In 2004, a novel mechanism of cellular death, called ‘NETosis’, was described in neutrophils. This mechanism, different from necrosis and apoptosis, is characterized by the release of chromatin webs admixed with microbicidal granular proteins and peptides (NETs). NETs trap and kill a variety of microorganisms. Diverse microorganisms, including Mycobacterium tuberculosis, are NET inducers in vitro. The aim of this study was to examine whether M. tuberculosis can also induce NETs in vivo and if the NETs are bactericidal to the microorganism. Guinea pigs were intradermally inoculated with M. tuberculosis H37Rv, and the production of NETs was investigated at several time points thereafter. NETs were detected as early as 30 min post-inoculation and were clearly evident by 4 h post-inoculation. NETs produced in vivo contained DNA, myeloperoxidase, elastase, histones, ROS and acid-fast bacilli. Viable and heat-killed M. tuberculosis, as well as Mycobacterium bovis BCG were efficient NET inducers, as were unilamellar liposomes prepared with lipids from M. tuberculosis. In vitro, guinea pig neutrophils also produced NETs in response to M. tuberculosis. However, neither the in vivo nor the in vitro-produced NETs were able to kill M. tuberculosis. Nevertheless, in vivo, neutrophils might propitiate recruitment and activation of more efficient microbicidal cells.


Parasitology ◽  
1983 ◽  
Vol 87 (3) ◽  
pp. 465-479 ◽  
Author(s):  
E. J. Pearce ◽  
Diane J. McLaren

SummaryIn vivoandin vitroparameters of immunity have been assessed in guinea-pigs sensitized with 500 normal or 500 radiation-attenuated cercariae ofSchistosoma mansoni. High levels of resistance to a challenge infection developed in both the chronic and irradiated vaccine model, but immunity was expressed earlier (week 4) and reached higher levels (90%) in the latter case. Vaccinated guinea-pigs have thus been shown to achieve greater resistance than the more commonly used rodent hosts.In vitrocytotoxicity assays have demonstrated that antibodies capable of participating in complement-dependent (lethal antibody) or eosinophil-mediated schistosomular killing, develop in the serum of guinea-pigs immunized with either normal or irradiated cercariae. The time course of development of the eosinophil adherence promoting antibody approximated in both models, the development of immunityin vivo, but the lethal antibody response paralleled the immune status of the animal only in the irradiated vaccine model


Sign in / Sign up

Export Citation Format

Share Document