uterine glands
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 29)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 8 (12) ◽  
pp. 316
Author(s):  
Xiaoxiao Gao ◽  
Xiaolei Yao ◽  
Xiaodan Li ◽  
Yaxu Liang ◽  
Zifei Liu ◽  
...  

The uterus, as part of the female reproductive tract, is essential for embryo survival and in the maintenance of multiple pregnancies in domestic animals. This study was conducted to investigate the effects of WNT6 on Hu sheep endometrial epithelial cells (EECs) and uterine glands (UGs) in Hu sheep, with high prolificacy rates. In the present study, Hu sheep with different fecundity, over three consecutive pregnancies, were divided into two groups: high prolificacy rate group (HP, litter size = 3) and low prolificacy rate group (LP, litter size = 1). A comparative analysis of the endometrial morphology was performed by immunofluorescence. RNA-seq was used to analyze the gene’s expression in endometrium of HP and LP Hu sheep, providing a candidate gene, which was investigated in EECs and organoid culture. Firstly, higher density of UGs was found in the HP Hu sheep groups (p < 0.05). The RNA-seq data revealed the importance of the WNT signaling pathway and WNT6 gene in Hu sheep endometrium. Functionally, WNT6 could promote the cell cycle progression of EECs via WNT/β-catenin signal and enhance UGs organogenesis. Taken together, WNT6 is a crucial regulator for sheep endometrial development; this finding may offer a new insight into understanding the regulatory mechanism of sheep prolificacy.


2021 ◽  
Vol 35 (10) ◽  
Author(s):  
Pramod Dhakal ◽  
Harriet C. Fitzgerald ◽  
Andrew M. Kelleher ◽  
Hongyu Liu ◽  
Thomas E. Spencer

Endocrinology ◽  
2021 ◽  
Author(s):  
Yamato Fukui ◽  
Yasushi Hirota ◽  
Tomoko Saito-Fujita ◽  
Shizu Aikawa ◽  
Takehiro Hiraoka ◽  
...  

Abstract Recent studies have demonstrated that the formation of an implantation chamber composed of a uterine crypt, an implantation-competent blastocyst, and uterine glands is a critical step in blastocyst implantation in mice. Leukemia inhibitory factor (LIF) activates signal transducer and activator of transcription 3 (STAT3) precursors via uterine LIF receptors (LIFRs), allowing successful blastocyst implantation. Our recent study revealed that the role of epithelial STAT3 is different from that of stromal STAT3. However, both are essential for blastocyst attachment, suggesting the different roles of epithelial and stromal LIFR in blastocyst implantation. However, how epithelial and stromal LIFR regulate the blastocyst implantation process remains unclear. To investigate the roles of LIFR in the uterine epithelium and stroma, we generated Lifr-floxed/lactoferrin (Ltf)-iCre (Lifr eKO) and Lifr-floxed/anti-Mullerian hormone receptor type 2 (Amhr2)-Cre (Lifr sKO) mice with deleted epithelial and stromal LIFR, respectively. Surprisingly, fertility and blastocyst implantation in the Lifr sKO mice were normal despite stromal STAT3 inactivation. In contrast, blastocyst attachment failed, and no implantation chambers were formed in the Lifr eKO mice with epithelial inactivation of STAT3. In addition, normal responsiveness to ovarian hormones was observed in the peri-implantation uteri of the Lifr eKO mice. These results indicate that the epithelial LIFR-STAT3 pathway initiates the formation of implantation chambers, leading to complete blastocyst attachment, and that stromal STAT3 regulates blastocyst attachment without stromal LIFR control. Thus, uterine epithelial LIFR is critical to implantation chamber formation and blastocyst attachment.


2021 ◽  
Vol 20 (8) ◽  
pp. 839-841
Author(s):  
A. V. Khokhlova

From the physiology of the female genital area, it is known that the alkaline secretion, secreted by the uterine glands, plays a very important role in the woman's body, creating favorable conditions for pregnancy.


2021 ◽  
Vol 11 (8) ◽  
pp. 713
Author(s):  
Manako Yamaguchi ◽  
Kosuke Yoshihara ◽  
Nozomi Yachida ◽  
Kazuaki Suda ◽  
Ryo Tamura ◽  
...  

The histology of the endometrium has traditionally been established by observation of two-dimensional (2D) pathological sections. However, because human endometrial glands exhibit coiling and branching morphology, it is extremely difficult to obtain an entire image of the glands by 2D observation. In recent years, the development of three-dimensional (3D) reconstruction of serial pathological sections by computer and whole-mount imaging technology using tissue clearing methods with high-resolution fluorescence microscopy has enabled us to observe the 3D histoarchitecture of tissues. As a result, 3D imaging has revealed that human endometrial glands form a plexus network in the basalis, similar to the rhizome of grass, whereas mouse uterine glands are single branched tubular glands. This review summarizes the relevant literature on the 3D structure of mouse and human endometrium and discusses the significance of the rhizome structure in the human endometrium and the expected role of understanding the 3D tissue structure in future applications to systems biology.


2021 ◽  
Author(s):  
Bryan E. McQueen ◽  
Avinash Kollipara ◽  
Clare E. Gyorke ◽  
Charles W. Andrews ◽  
Ashley Ezzell ◽  
...  

Genital infections with Chlamydia trachomatis can lead to uterine and oviduct tissue damage in the female reproductive tract. Neutrophils are strongly associated with tissue damage during chlamydial infection, while an adaptive CD4 T cell response is necessary to combat infection. Activation of triggering receptor expressed on myeloid cells-1 (TREM-1) on neutrophils has previously been shown to induce and/or enhance degranulation synergistically with TLR-signaling. Additionally, TREM-1 can promote neutrophil transepithelial migration. In this study, we sought to determine the contribution of TREM-1,3 in immunopathology in the female mouse genital tract during Chlamydia muridarum infection. Relative to control mice, trem1,3 -/- mice had no difference in chlamydial burden or duration of lower genital tract infection. We also observed a similar incidence of oviduct hydrosalpinx 45 days post-infection in trem1,3 -/- compared to WT mice. However, compared to WT, trem1,3 -/- mice developed significantly fewer uterine horn hydrometra. Early in infection, trem1,3 -/- mice displayed a notable decrease in the number of uterine glands containing polymorphonuclear cells and uterine horn lumens had fewer neutrophils, with increased G-CSF. Trem1,3 -/- mice also had reduced erosion of the luminal epithelium. These data indicate TREM-1,3 contributes to transepithelial neutrophil migration in the uterus and uterine glands, promoting the development of uterine hydrometra in infected mice.


Author(s):  
Lea Magdalena Rempel ◽  
Karina Tietgen Andresen Lillevang ◽  
Ann-Kirstine thor Straten ◽  
Sólrún Barbara Friðriksdóttir ◽  
Hanna Körber ◽  
...  

AbstractThe aetiology of primary uterine inertia (PUI), which is the most common cause of canine dystocia, is still not elucidated. Prostaglandins (PGs) play a crucial role in parturition. We hypothesized that the expression of prostaglandin endoperoxidase synthase 2 (PTGS2), PGF2α synthase (PGFS), and corresponding receptor (PTGFR) is altered in PUI. We investigated PTGS2, PGFS, and PTGFR mRNA expression, and PTGS2 and PGFS protein expression in interplacental (IP) and uteroplacental sites (UP) in bitches with PUI, obstructive dystocia (OD), and prepartum (PC). PTGS2, PGFS, and PTGFR mRNA expression did not differ significantly between PUI and OD (IP/UP). PTGFR ratio in UP was higher in PC than in OD (p = 0.014). PTGS2 immunopositivity was noted in foetal trophoblasts, luminal and superficial glandular epithelial cells, smooth muscle cells of both myometrial layers, and weakly and sporadically in deep uterine glands. PGFS was localized in luminal epithelial cells and in the epithelium of superficial uterine glands. PTGS2 and PGFS staining was similar between PUI and OD, while PGFS protein expression differed between OD and PC (p = 0.0215). For PTGS2, the longitudinal myometrial layer of IP stained significantly stronger than the circular layer, independent of groups. These results do not support a role for PTGS2, PGFS, and PTGFR in PUI. Reduced PGFS expression in IP during parturition compared with PC and the overall lack of placental PGFS expression confirm that PGFS is not the main source of prepartal PGF2alpha increase. The difference in PTGS2 expression between IP myometrial layers warrants further investigation into its physiological relevance.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ibrahim Fouad Elesh ◽  
Mohamed Ali Marey ◽  
Mohammed Ali Zinnah ◽  
Ihshan Akthar ◽  
Tomoko Kawai ◽  
...  

In mammals, the uterine mucosal immune system simultaneously recognizes and reacts to most bacteria as well as allogenic sperm mainly through the Toll-like receptors (TLR)2/4 signaling pathway. Here, we characterized the impact of pathogen-derived TLR2/4 ligands (peptidoglycan (PGN)/lipopolysaccharide (LPS)) on the immune crosstalk of sperm with the bovine endometrial epithelium. The real-time PCR analysis showed that the presence of low levels of PGN, but not LPS, blocked the sperm-induced inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. Immunoblotting analysis revealed that PGN prevented the sperm-induced phosphorylation of JNK in BEECs. Activation or blockade of the TLR2 system in the endometrial epithelium verified that TLR2 signaling acts as a commonly-shared pathway for PGN and sperm recognition. The impairment of endometrial sperm recognition, induced by PGN, subsequently inhibited sperm phagocytosis by polymorphonuclear neutrophils (PMNs). Moreover, using an ex vivo endometrial explant that more closely resembles those in vivo conditions, showed that sperm provoked a mild and reversible endometrial tissue injury and triggered PMN recruitment into uterine glands, while PGN inhibited these events. Of note, PGN markedly increased the sperm attachment to uterine glands, and relatively so in the surface epithelium. However, addition of the anti-CD44 antibody into a PGN-sperm-explant co-culture completely blocked sperm attachment into glands and surface epithelia, indicating that the CD44 adhesion molecule is involved in the PGN-triggered sperm attachment to the endometrial epithelium. Together, these findings demonstrate that, the presence of PGN residues disrupts sperm immune recognition and prevents the physiological inflammation induced by sperm in the endometrial epithelium via the MyD88-dependent pathway of TLR2 signaling, possibly leading to impairment of uterine clearance and subsequent embryo receptivity.


2021 ◽  
Vol 7 ◽  
Author(s):  
Miguel Tavares Pereira ◽  
Renata Nowaczyk ◽  
Rita Payan-Carreira ◽  
Sonia Miranda ◽  
Selim Aslan ◽  
...  

In the dog, implantation takes place at approximately 17 days of embryonal life and, while exposed to relatively high circulating progesterone concentrations, embryos presence is required for the formation of decidua. Furthermore, a balance between pro- and anti-inflammatory responses in conceptus-maternal communication is crucial for the onset of pregnancy. Strikingly, the understanding of such immune mechanisms in canine reproduction is still elusive. Here, canine uterine samples from pre-implantation (day 10–12, E+) and corresponding non-pregnant controls (E–), implantation (day 17, Imp) and post-implantation (day 18–25, Post-Imp) stages of pregnancy were used to investigate the expression and localization of several immune-related factors. The most important findings indicate increased availability of CD4, MHCII, NCR1, IDO1, AIF1, CD25, CCR7, and IL6 in response to embryo presence (E+), while FoxP3 and CCL3 were more abundant in E– samples. Implantation was characterized by upregulated levels of FoxP3, IL12a, ENG, and CDH1, whereas CD4, CCR7, IL8, and -10 were less represented. Following implantation, decreased transcript levels of TNFR1, MHCII, NCR1, TLR4, CD206, FoxP3, and IL12a were observed concomitantly with the highest expression of IL6 and IL1β. MHCII, CD86, CD206, CD163, TNFα, IDO1, and AIF1 were immunolocalized in macrophages, CD4 and Nkp46 in lymphocytes, and some signals of IDO1, AIF1, and TNF-receptors could also be identified in endothelial cells and/or uterine glands. Cumulatively, new insights regarding uterine immunity in the peri-implantation period are provided, with apparent moderated pro-inflammatory signals prevailing during pre-implantation, while implantation and early trophoblast invasion appear to be associated with immunomodulatory and rather anti-inflammatory conditions.


Sign in / Sign up

Export Citation Format

Share Document