What the Ur-crustacean Looked Like

Author(s):  
Stefan Richter ◽  
Christian Wirkner

Crustaceans are a paraphyletic assemblage within arthropods. Hexapoda (insects) are nested within crustaceans, with the Remipedia the most likely sister group to Hexapoda. Together, crustaceans and hexapods comprise the monophyletic Tetraconata (also called Pancrustacea). Herein, we “reconstruct” the last common ancestor of crown group Tetraconata, calling it the ur-crustacean. We base our reconstruction on knowledge of extant crustaceans. We tentatively suggest that the ur-crustacean displayed certain characters: The ur-crustacean was a free-living marine species with a distinct head and equipped with two pairs of sensory limbs (antennule and antenna), mandibles, and two more pairs of mouthparts (maxillule and maxilla). We suggest that no further segments were fused to the head and that no maxilliped was present. The ur-crustacean may or may not have possessed a carapace. Its brain was complex, with an extended olfactory system, possibly a central complex, and a lateral protocerebrum containing at least two optical neuropils. The protocerebrum was connected to a nauplius eye as well as to compound eyes. The ur-crustacean might have had a uniformly segmented trunk posterior to its five-segmented head or (less probably) may have possessed two tagmata, a limb-bearing thorax and a limb-less abdomen. It had a heart that might have extended right through the trunk independently of tagmatization. Its thoracopodal appendages were true arthropodal (consisting of podomeres) with a protopod (probably subdivided into coxa and basis), an exopod, and an endopod. Larval development started with a nauplius larva (probably an orthonauplius).

2011 ◽  
Vol 279 (1732) ◽  
pp. 1259-1268 ◽  
Author(s):  
Jakob Vinther ◽  
Erik A. Sperling ◽  
Derek E. G. Briggs ◽  
Kevin J. Peterson

Aplacophorans have long been argued to be basal molluscs. We present a molecular phylogeny, including the aplacophorans Neomeniomorpha (Solenogastres) and Chaetodermomorpha (Caudofoveata), which recovered instead the clade Aculifera (Aplacophora + Polyplacophora). Our relaxed Bayesian molecular clock estimates an Early Ordovician appearance of the aculiferan crown group consistent with the presence of chiton-like molluscs with seven or eight dorsal shell plates by the Late Cambrian (approx. 501–490 Ma). Molecular, embryological and palaeontological data indicate that aplacophorans, as well as chitons, evolved from a paraphyletic assemblage of chiton-like ancestors. The recovery of cephalopods as a sister group to aculiferans suggests that the plesiomorphic condition in molluscs might be a morphology similar to that found in monoplacophorans.


2020 ◽  
Vol 8 (9) ◽  
pp. 661
Author(s):  
Davide Asnicar ◽  
Costanza Cappelli ◽  
Ahmad Safuan Sallehuddin ◽  
Nur Atiqah Maznan ◽  
Maria Gabriella Marin

Despite the widespread use of herbicide glyphosate in cultivation, its extensive runoff into rivers and to coastal areas, and the persistence of this chemical and its main degradation product (aminomethylphosphonic acid, AMPA) in the environment, there is still little information on the potential negative effects of glyphosate, its commercial formulation Roundup® and AMPA on marine species. This study was conducted with the aim of providing a comparative evaluation of the effects of glyphosate-based and its derived chemicals on the larval development of the sea urchin Paracentrotus lividus, thus providing new data to describe the potential ecotoxicity of these contaminants. In particular, the effects on larval development, growth and metabolism were assessed during 48 h of exposure from the time of egg fertilization. The results confirm that AMPA and its parent compound, glyphosate have similar toxicity, as observed in other marine invertebrates. However, interestingly, the Roundup® formulation seemed to be less toxic than the glyphosate alone.


2021 ◽  
Author(s):  
Ksenia Juravel ◽  
Luis Porras ◽  
Sebastian Hoehna ◽  
Davide Pisani ◽  
Gert Wörheide

An accurate phylogeny of animals is needed to clarify their evolution, ecology, and impact on shaping the biosphere. Although multi-gene alignments of up to several hundred thousand amino acids are nowadays routinely used to test hypotheses of animal relationships, some nodes towards the root of the animal phylogeny are proving hard to resolve. While the relationships of the non-bilaterian lineages, primarily sponges (Porifera) and comb jellies (Ctenophora), have received much attention since more than a decade, controversies about the phylogenetic position of the worm-like bilaterian lineage Xenacoelomorpha and the monophyly of the "Superphylum" Deuterostomia have more recently emerged. Here we independently analyse novel genome gene content and morphological datasets to assess patterns of phylogenetic congruence with previous amino-acid derived phylogenetic hypotheses. Using statistical hypothesis testing, we show that both our datasets very strongly support sponges as the sister group of all the other animals, Xenoacoelomorpha as the sister group of the other Bilateria, and largely support monophyletic Deuterostomia. Based on these results, we conclude that the last common animal ancestor may have been a simple, filter-feeding organism without a nervous system and muscles, while the last common ancestor of Bilateria might have been a small, acoelomate-like worm without a through gut.


2019 ◽  
Vol 187 (4) ◽  
pp. 1061-1077 ◽  
Author(s):  
Russell D C Bicknell ◽  
Lisa Amati ◽  
Javier Ortega-Hernández

Abstract Vision allows animals to interact with their environment. Aquatic chelicerates dominate the early record of lateral compound eyes among non-biomineralizing crown-group euarthropods. Although the conservative morphology of lateral eyes in Xiphosura is potentially plesiomorphic for Euarthropoda, synziphosurine eye organization has received little attention despite their early diverging phylogenetic position. Here, we re-evaluate the fossil evidence for lateral compound eyes in the synziphosurines Bunodes sp., Cyamocephalus loganensis, Legrandella lombardii, Limuloides limuloides, Pseudoniscus clarkei, Pseudoniscus falcatus and Pseudoniscus roosevelti. We compare these data with lateral eyes in the euchelicerates Houia yueya, Kasibelinurus amicorum and Lunataspis aurora. We find no convincing evidence for lateral eyes in most studied taxa, and Pseudoniscus roosevelti and Legrandella lombardii are the only synziphosurines with this feature. Our findings support two scenarios for euchelicerate lateral eye evolution. The elongate-crescentic lateral eyes of Legrandella lombardii might represent the ancestral organization, as suggested by the phylogenetic position of this taxon in stem-group Euchelicerata. Alternatively, the widespread occurrence of kidney-shaped lateral eyes in stem-group Xiphosura and stem-group Arachnida could represent the plesiomorphic condition; Legrandella lombardii eyes would therefore be derived. Both evolutionary scenarios support the interpretation that kidney-shaped lateral eyes are ancestral for crown-group Euchelicerata and morphologically conserved in extant Limulus polyphemus.


2020 ◽  
Vol 6 (49) ◽  
pp. eabc6721
Author(s):  
John R. Paterson ◽  
Gregory D. Edgecombe ◽  
Diego C. García-Bellido

Radiodonts are nektonic stem-group euarthropods that played various trophic roles in Paleozoic marine ecosystems, but information on their vision is limited. Optical details exist only in one species from the Cambrian Emu Bay Shale of Australia, here assigned to Anomalocaris aff. canadensis. We identify another type of radiodont compound eye from this deposit, belonging to ‘Anomalocaris’ briggsi. This ≤4-cm sessile eye has >13,000 lenses and a dorsally oriented acute zone. In both taxa, lenses were added marginally and increased in size and number throughout development, as in many crown-group euarthropods. Both species’ eyes conform to their inferred lifestyles: The macrophagous predator A. aff. canadensis has acute stalked eyes (>24,000 lenses each) adapted for hunting in well-lit waters, whereas the suspension-feeding ‘A.’ briggsi could detect plankton in dim down-welling light. Radiodont eyes further demonstrate the group’s anatomical and ecological diversity and reinforce the crucial role of vision in early animal ecosystems.


2003 ◽  
Vol 77 (4) ◽  
pp. 784-789 ◽  
Author(s):  
Dario G. Lazo ◽  
Marcela Cichowolski

Plesiosaurs constitute a monophyletic group whose stratigraphical range is uppermost Triassic to uppermost Cretaceous (Brown, 1981). They were large predatory marine reptiles, highly adapted for submarine locomotion, with powerful paddle-like limbs and heavily reinforced limb girdles (Saint-Seine, 1955; Romer, 1966; Carroll, 1988; Benton, 1990). The Plesiosauria clade belongs to the Sauropterygia, which has recently been hypothesized as the sister-group of the Ichthyosauria. Together with that clade they form the Euryapsida (Caldwell, 1997). The Sauropterygia can be subdivided into relatively plesiomorphic stem-group taxa from the Triassic (Placodonts, Nothosauroids, and Pistosauroids), and the obligatorily marine crown-group Plesiosauria (Rieppel, 1999). Plesiosaurs are traditionally divided into two superfamilies: Plesiosauroidea, with usually small heads and long necks; and Pliosauroidea, with larger heads and shorter necks (Welles, 1943; Persson, 1963; Brown, 1981). Plesiosauroidea contains three families: Plesiosauridae, Cryptoclididae, and Elasmosauridae (Brown, 1981; Brown and Cruickshank, 1994). The validity of the Polycotylidae Cope, 1869, has long been questioned and its phylogenetic position among Plesiosauria debated, as many consider it to be related to the Pliosauridae or to be a sister-group of the Elasmosauridae (Sato and Storrs, 2000; O'Keefe, 2001).


2010 ◽  
Vol 79 (3) ◽  
pp. 93-106 ◽  
Author(s):  
Juliana Sterli

The origin and evolution of the crown-group of turtles (Cryptodira + Pleurodira) is one of the most interesting topics in turtle evolution, second perhaps only to the phylogenetic position of turtles among amniotes. The present contribution focuses on the former problem, exploring the phylogenetic relationships of extant and extinct turtles based on the most comprehensive phylogenetic dataset of morphological and molecular data analyzed to date. Parsimony analyses were conducted for different partitions of data (molecular and morphological) and for the combined dataset. In the present analysis, separate analyses of the molecular data always retrieve Pleurodira allied to Trionychia. Separate analysis of the morphological dataset, by contrast, depicts a more traditional arrangement of taxa, with Pleurodira as the sister group of Cryptodira, being Chelonioidea the most basal cryptodiran clade. The simultaneous analysis of all available data retrieves all major extant clades as monophyletic, except for Cryptodira given that Pleurodira is retrieved as the sister group of Trionychia. The paraphyly of Cryptodira is an unorthodox result, and is mainly caused by the combination of two factors. First, the molecular signal allies Pleurodira and Trionychia. Second, the morphological data with extinct taxa locates the position of the root of crown-group Testudines in the branch leading to Chelonioidea. This study highlights major but poorly explored topics of turtle evolution: the alternate position of Pleurodira and the root of crown turtles. The diversification of crown turtles is characterized by the presence of long external branches and short internal branches (with low support for the internal nodes separating the major clades of crown turtles), suggesting a rapid radiation of this clade. This rapid radiation is also supported by the fossil record, because soon after the appearance of the oldest crown-group turtles (Middle-Late Jurassic of Asia) the number and diversity of turtles increases remarkably. This evolutionary scenario of a rapid diversification of modern turtles into the major modern lineages is likely the reason for the difficulty in determining the interrelationships and the position of the root of crown-group turtles.


Paleobiology ◽  
1993 ◽  
Vol 19 (2) ◽  
pp. 141-167 ◽  
Author(s):  
James A. Doyle ◽  
Michael J. Donoghue

Approaches to patterns of diversification based on counting taxa at a given rank can be misleading, even when all taxa are monophyletic. Such “rank-based” approaches are unable to reflect a hierarchy of evolutionary events because taxa of the same rank cannot be nested within one another. Phylogenetic trees specify an order of origination of characters and clades and can therefore be used in some cases to test hypotheses on causal relationships between characters and changes in diversity. “Tree-thinking” also clarifies discussions of the age of groups, by distinguishing between splitting of the stem-lineage from its sister group and splitting of the crown-group into extant clades.Cladistic evidence that Pentoxylon, Bennettitales, and Gnetales are the sister group of angiosperms implies that the angiosperm line (angiophytes) existed by the Late Triassic. The presence of primitive members of five basic angiosperm clades indicates that the crown-group (angiosperms) had begun to diversify by the mid-Early Cretaceous (Barremian-Aptian), but not necessarily much earlier. The greatest unresolved issue raised by cladistic analyses concerns the fact that the angiosperm tree can be rooted in two almost equally parsimonious positions. Trees rooted near Magnoliales (among “woody magnoliids”) suggest that the angiosperm radiation may have been triggered by the origin of intrinsic traits, e.g., a fast-growing, rhizomatous habit in the paleoherb and eudicot subgroup. However, trees rooted among paleoherbs, which are favored by rRNA data, imply that these traits are basic for angiosperms as a whole. This could mean that the crown-group originated not long before its radiation, or, if it did originate earlier, that its radiation was delayed due to extrinsic factors. Such factors could be a trend from environmental homogeneity and stability in the Jurassic to renewed tectonic activity and disturbance in the Early Cretaceous. Potentially relevant pre-Cretaceous fossils cannot be placed with confidence, but may be located along the stem-lineage (stem angiophytes); their generally paleoherb-like features favor the paleoherb rooting. The history of angiophytes may parallel that of Gnetales: some diversification of the stem-lineage in the Late Triassic, near disappearance in the Jurassic, and vigorous radiation of the crown-group in the Early Cretaceous.


2015 ◽  
Vol 370 (1684) ◽  
pp. 20150053 ◽  
Author(s):  
Vincenzo G. Fiore ◽  
Raymond J. Dolan ◽  
Nicholas J. Strausfeld ◽  
Frank Hirth

Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates.


Sign in / Sign up

Export Citation Format

Share Document