Nanomaterials: Specificities of Properties and Synthesis

Author(s):  
Jean-Pierre Jolivet

The concept of material concerns matter in solid state that is endowed with usable properties for practical applications. It is indeed in the solid state that matter exhibits the highest mechanical strength and chemical inertness, providing solidity and sustainability because the solid is based on an extended stiff crystalline framework. It is also in the solid state that many properties exist, including optical, electrical, and magnetic properties, providing great technological progress. A typical example is electronics which owes its enormous development to doped silicon. A material may therefore be defined as a useful solid. The properties of a solid depend directly on its chemical composition, crystalline and electronic structures, texture, as well as morphology and casting. This last point, which is often neglected, is illustrated by amorphous silica glass, which is used largely for its properties such as chemical inertness, mechanical strength, optical transparency, and low thermal and electrical conductivities. These various properties are highlighted through the many possibilities of casting and shaping: flat glass (optical transparency for glazing); hollow glass (chemical inertness and mechanical strength for bottling); short fibers (glass wool for heat insulation) and long fibers (optical fibers); massive pieces (insulators for electric power lines); and thin films (insulating layers for miniaturized electronics). Metal oxides exhibit a wide range of exploitable properties useful for innumerable applications. Silica, SiO2, as flat glass, has excellent optical properties, but other oxides such as LiNbO3 and KTiOPO4 exhibit interesting nonlinear optical properties, allowing changes in the wavelength of the transmitted light. Certain oxides are good electrical insulators (SiO2), but others are true elec­tronic conductors (VO2, NaxWO3), ionic conductors (β-alumina NaAl11O17, NaSiCON Na3Zr2PSi2O12, yttria-stabilized cubic zirconia Zr1–xYxO2–x/ 2), and also superconductors (cuprates such as YBa2Cu3O7–x and Bi4Sr3Ca3Cu4O16+x). Compounds such as BaTiO3, PbZr1–xTixO3, and PbMg1/3Nb2/3O3 are ferroelectric solids used largely as miniaturized electronic components, whereas spinel ferrite γ-Fe2O3, barium hexaferrite BaFe12O19, and garnet Y3Fe5O12 are more or less coercive ferrimagnetic solids used in magnetic recording or as permanent magnets.

Author(s):  
Yiwen Chu ◽  
Mikhail D. Lukin

A common theme in the implementation of quantum technologies involves addressing the seemingly contradictory needs for controllability and isolation from external effects. Undesirable effects of the environment must be minimized, while at the same time techniques and tools must be developed that enable interaction with the system in a controllable and well-defined manner. This chapter addresses several aspects of this theme with regard to a particularly promising candidate for developing applications in both metrology and quantum information, namely the nitrogen-vacancy (NV) centre in diamond. The chapter describes how the quantum states of NV centres can be manipulated, probed, and efficiently coupled with optical photons. It also discusses ways of tackling the challenges of controlling the optical properties of these emitters inside a complex solid state environment.


Nanophotonics ◽  
2020 ◽  
Vol 9 (14) ◽  
pp. 4233-4252
Author(s):  
Yael Gutiérrez ◽  
Pablo García-Fernández ◽  
Javier Junquera ◽  
April S. Brown ◽  
Fernando Moreno ◽  
...  

AbstractReconfigurable plasmonics is driving an extensive quest for active materials that can support a controllable modulation of their optical properties for dynamically tunable plasmonic structures. Here, polymorphic gallium (Ga) is demonstrated to be a very promising candidate for adaptive plasmonics and reconfigurable photonics applications. The Ga sp-metal is widely known as a liquid metal at room temperature. In addition to the many other compelling attributes of nanostructured Ga, including minimal oxidation and biocompatibility, its six phases have varying degrees of metallic character, providing a wide gamut of electrical conductivity and optical behavior tunability. Here, the dielectric function of the several Ga phases is introduced and correlated with their respective electronic structures. The key conditions for optimal optical modulation and switching for each Ga phase are evaluated. Additionally, we provide a comparison of Ga with other more common phase-change materials, showing better performance of Ga at optical frequencies. Furthermore, we first report, to the best of our knowledge, the optical properties of liquid Ga in the terahertz (THz) range showing its broad plasmonic tunability from ultraviolet to visible-infrared and down to the THz regime. Finally, we provide both computational and experimental evidence of extension of Ga polymorphism to bidimensional two-dimensional (2D) gallenene, paving the way to new bidimensional reconfigurable plasmonic platforms.


2019 ◽  
Vol 40 (1) ◽  
pp. 73-89 ◽  
Author(s):  
Manzar Abbas ◽  
Ilona Peszlen ◽  
Rui Shi ◽  
Hoon Kim ◽  
Rui Katahira ◽  
...  

Abstract Cellulose synthase A genes (CesAs) are responsible for cellulose biosynthesis in plant cell walls. In this study, functions of secondary wall cellulose synthases PtrCesA4, PtrCesA7-A/B and PtrCesA8-A/B were characterized during wood formation in Populus trichocarpa (Torr. & Gray). CesA RNAi knockdown transgenic plants exhibited stunted growth, narrow leaves, early necrosis, reduced stature, collapsed vessels, thinner fiber cell walls and extended fiber lumen diameters. In the RNAi knockdown transgenics, stems exhibited reduced mechanical strength, with reduced modulus of rupture (MOR) and modulus of elasticity (MOE). The reduced mechanical strength may be due to thinner fiber cell walls. Vessels in the xylem of the transgenics were collapsed, indicating that water transport in xylem may be affected and thus causing early necrosis in leaves. A dramatic decrease in cellulose content was observed in the RNAi knockdown transgenics. Compared with wildtype, the cellulose content was significantly decreased in the PtrCesA4, PtrCesA7 and PtrCesA8 RNAi knockdown transgenics. As a result, lignin and xylem contents were proportionally increased. The wood composition changes were confirmed by solid-state NMR, two-dimensional solution-state NMR and sum-frequency-generation vibration (SFG) analyses. Both solid-state nuclear magnetic resonance (NMR) and SFG analyses demonstrated that knockdown of PtrCesAs did not affect cellulose crystallinity index. Our results provided the evidence for the involvement of PtrCesA4, PtrCesA7-A/B and PtrCesA8-A/B in secondary cell wall formation in wood and demonstrated the pleiotropic effects of their perturbations on wood formation.


Author(s):  
Shuyuan Li ◽  
Zhongyuan Huang ◽  
Yinguo Xiao ◽  
Chunwen Sun

Solid-state electrolytes (SSEs) are expected to replace liquid electrolytes in lithium metal batteries (LMBs) with good safety and mechanical strength. However, the existing problems of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte like their...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Koperski ◽  
K. Pakuła ◽  
K. Nogajewski ◽  
A. K. Dąbrowska ◽  
M. Tokarczyk ◽  
...  

AbstractWe demonstrate quantum emission capabilities from boron nitride structures which are relevant for practical applications and can be seamlessly integrated into a variety of heterostructures and devices. First, the optical properties of polycrystalline BN films grown by metalorganic vapour-phase epitaxy are inspected. We observe that these specimens display an antibunching in the second-order correlation functions, if the broadband background luminescence is properly controlled. Furthermore, the feasibility to use flexible and transparent substrates to support hBN crystals that host quantum emitters is explored. We characterise hBN powders deposited onto polydimethylsiloxane films, which display quantum emission characteristics in ambient environmental conditions.


2014 ◽  
Vol 2 (30) ◽  
pp. 6084 ◽  
Author(s):  
Naoyuki Komuro ◽  
Masayoshi Mikami ◽  
Yasuo Shimomura ◽  
Erica G. Bithell ◽  
Anthony K. Cheetham

2005 ◽  
Vol 78 (6) ◽  
pp. 1167-1173 ◽  
Author(s):  
Emi Horiguchi ◽  
Shinya Matsumoto ◽  
Kazumasa Funabiki ◽  
Masaki Matsui

1985 ◽  
Vol 60 ◽  
Author(s):  
J. D. Barrie ◽  
D. L. Yang ◽  
B. Dunn ◽  
O. M. Stafsudd

AbstractIon exchanged ß“-aluminas display a number of interesting optical properties which suggest that the material is well suited for application as a solid state laser host. Small platelets of Nd3+ Ion exchanged β“-alumina exhibit laser action with gain coefficients many times greater than YAG. The versatility of the ion exchange process enables one to form a wide variety of compounds with different active ions and concentrations, thereby allowing the study of many different effects within a single host crystal.


2013 ◽  
Vol 581 ◽  
pp. 101-108 ◽  
Author(s):  
Z. Kotan ◽  
M. Ayvacikli ◽  
Y. Karabulut ◽  
J. Garcia-Guinea ◽  
L. Tormo ◽  
...  

2021 ◽  
Author(s):  
Dominik Göbel ◽  
Pascal Rusch ◽  
Daniel Duvinage ◽  
Tim Stauch ◽  
Nadja C. Bigall ◽  
...  

The synthesis and optical characterization of novel single-benzene ESIPT-based fluorophores is described in solid state and in solution. Special attention is given towards the influence of their unique substitution pattern on their optical properties. Depending on this pattern, aggregation induced emission or aggregation caused quenching (ACQ) is observed in the solid state.<br>


Sign in / Sign up

Export Citation Format

Share Document