Fractals In Geosciences— Challenges And Concerns

Author(s):  
UteChristina Herzfeld

"Fractals" and "chaos" have become increasingly popular in geology; however, the use of "fractal" methods is mostly limited to simple cases of selfsimilarity, often taken as the prototype of a scaling property if not mistaken as equivalent to a fractal as such. Here; a few principles of fractal and chaos theory are clarified, an overview of geoscience applications is given, and possible pitfalls are discussed. An example from seafloor topography relates fractal dimension, self-similarity, and multifractal cascade scaling to traditional geostatistical and statistical concepts. While the seafloor has neither self-similar nor cascade scaling behavior, methods developed in the course of "fractal analysis" provide ways to quantitatively describe variability in spatial structures across scales arid yield geologically meaningful results. Upon hearing the slogan "the appleman reigns between order and chaos" in the early 1980's and seeing colorful computer-generated pictures, one was simply fascinated by the strangely beautiful figure of the "appleman" that, when viewed through a magnifying glass, has lots of parts that, are smaller, and smaller, and smaller applemen. The "appleman" is the recurrent feature of the Mandelbrot set, a self-similar fractal, and in a certain sense, the universal fractal (e.g., see Peitgen and Saupe, 1988, p. 195 ff.). Soon the realm of the appleman expanded, made possible by increasing availability of fast, cheap computer power and increasingly sophisticated computer graphics. In its first phase of popularity, when the Bremen working group traveled with their computer graphics display seeking public recognition through exhibits in the foyers of savings banks, the fractal was generally considered to be a contribution to modern art (Peitgen and Richter, The Beauty of Fractals, 1986). While the very title of Mandelbrot's famous book, The Fractal Geometry of Nature (1983), proclaims the discovery of the proper geometry to describe nature, long hidden by principals of Euclidean geometry, the "fractal" did not appeal to Earth scientists for well over two decades after its rediscovery by Mandelbrot (1964, 1965, 1967, 1974, 1975).

2014 ◽  
Vol 3 (3) ◽  
pp. 114-143
Author(s):  
Gabriel Crumpei ◽  
Maricel Agop ◽  
Alina Gavriluţ ◽  
Irina Crumpei

Abstract In this paper, we aim at an exercise that is transdisciplinary, involving science and religion, and interdisciplinary, involving disciplines and theories which appeared in the second half of the 20th century (e.g., topology, chaos theory, fractal geometry, non-linear dynamics, all of which can be found in the theory of complex systems). The latter required the reformulation of quantum mechanics theories starting with the beginning of the century, based on the substance-energy-information triangle. We focus on information and we also attempt a transdisciplinary approach to the imaginary from a psychological - physical - mathematical perspective, but the religious perspectives find their place along with the philosophical or even philological vision


Author(s):  
Terry Marks-Tarlow

This chapter describes fractal geometry as a bridge between the imaginary and the real, mind and matter, conscious and the unconscious. Fractals are multidimensional objects with self-similar detail across size and/or time scales. Jung conceived of number as the most primitive archetype of order, serving to link observers with the observed. Whereas Jung focused upon natural numbers as the foundation for order that is already conscious in the observer, I offer up the fractal geometry as the underpinnings for a dynamic unconscious destined never to become fully conscious. Throughout nature, fractals model the complex, recursively branching structures of self-organizing systems. When they serve at the edges of open systems, fractal boundaries articulate a paradoxical zone that simultaneously separates as it connects. When modeled by Spencer-Brown’s mathematical notation, full interpenetration between inside and outside edges translates to a distinction that leads to no distinction. By occupying the infinitely deep “space between” dimensions and levels of existence, fractal boundaries contribute to the notion of intersubjectivity, where self and other become most entwined. They also exemplify reentry dynamics of Varela’s autonomous systems, plus Hofstadter’s ever-elusive “tangled hierarchy” between brain and mind.


2006 ◽  
Vol 45 ◽  
pp. 1646-1651 ◽  
Author(s):  
J.J. Mecholsky Jr.

The fracture surface records past events that occur during the fracture process by leaving characteristic markings. The application of fractal geometry aids in the interpretation and understanding of these events. Quantitative fractographic analysis of brittle fracture surfaces shows that these characteristic markings are self-similar and scale invariant, thus implying that fractal analysis is a reasonable approach to analyzing these surfaces. The fractal dimensional increment, D*, is directly proportional to the fracture energy, γ, during fracture for many brittle materials, i.e., γ = ½ E a0 D* where E is the elastic modulus and a0 is a structural parameter. Also, D* is equal to the crack-size-to-mirror-radius ratio. Using this information can aid in identifying toughening mechanisms in new materials, distinguishing poorly fabricated from well prepared material and identifying stress at fracture for field failures. Examples of the application of fractal analysis in research, fracture forensics and solving production problems are discussed.


Fractals ◽  
1997 ◽  
Vol 05 (supp01) ◽  
pp. 39-50 ◽  
Author(s):  
John C. Hart ◽  
Wayne O. Cochran ◽  
Patrick J. Flynn

The difficult task of finding a fractal representation of an input shape is called the inverse, problem of fractal geometry. Previous attempts at solving this problem have applied techniques from numerical minimization, heuristic search and image compression. The most appropriate domain from which to attack this problem is not numerical analysis nor signal processing, but model-based computer vision. Self-similar objects cause an existing computer vision algorithm called geometric hashing to malfunction. Similarity hashing capitalizes on this observation to not only detect a shape's morphological self-similarity but also find the parameters of its self-transformations.


Leonardo ◽  
2016 ◽  
Vol 49 (1) ◽  
pp. 66-67
Author(s):  
Dhruba Deb

The unpredictability of cancer poses a threat to personalized cures. Although cancer is studied as a chaotic system, the shape of its unpredictability, known as the strange attractor, is unclear. In this article, the author discusses a conceptual model, building on the strange attractor in cancer phase space. Using techniques of cubism, the author defines the 10-dimensional phase space and then, using an abstract expressionist approach, represents the strange attractor, which twists and turns in multi dimensions, indicating the unpredictability of cancer. This conceptual model motivates the identification of specific experiments for a system-level understanding of cancer.


Author(s):  
John C. Russ

Observers of nature at scales from microscopic to global have long recognized that few structures are actually described by Euclidean geometry. Mountains are not cones, clouds are not ellipsoids, and surfaces are not planes. Classical geometry allows dimensions of 0 (point), 1 (line), 2 (surface), and 3 (volume). The advent of a new geometry that allows for fractional dimensions between these integer topological values has stirred much interest because it seems to provide a tool for describing many natural objects. As is the case for many new tools, this fractal geometry is subject to some overuse and abuse.A classic illustration of fractal dimension concerns the length of a boundary line, such as the coast of Britain. Measuring maps with different scales, or striding along the coastline with various measuring rods, produces a result that depends on the resolution. More than this is required for the coastline to be fractal, however: It must also be self-similar.


MRS Bulletin ◽  
1988 ◽  
Vol 13 (2) ◽  
pp. 22-27 ◽  
Author(s):  
Dale W. Schaefer

Science often advances through the introdction of new ideas which simplify the understanding of complex problems. Materials science is no exception to this rule. Concepts such as nucleation in crystal growth and spinodal decomposition, for example, have played essential roles in the modern understanding of the structure of materials. More recently, fractal geometry has emerged as an essential idea for understanding the kinetic growth of disordered materials. This review will introduce the concept of fractal geometry and demonstrate its application to the understanding of the structure of materials.Fractal geometry is a natural concept used to describe random or disordered objects ranging from branched polymers to the earth's surface. Disordered materials seldom display translational or rotational symmetry so conventional crystallographic classification is of no value. These materials, however, often display “dilation symmetry,” which means they look geometrically self-similar under transformation of scale such as changing the magnification of a microscope. Surprisingly, most kinetic growth processes produce objects with self-similar fractal properties. It is now becoming clear that the origin of dilation symmetry is found in disorderly kinetic growth processes present in the formation of these materials.


Sign in / Sign up

Export Citation Format

Share Document