Generalized Computational Systems

Author(s):  
Marco Giunti

The definition of a computational system that I proposed in chapter 1 (definition 3) employs the concept of Turing computability. In this chapter, however, I will show that this concept is not absolute, but instead depends on the relational structure of the support on which Turing machines operate. Ordinary Turing machines operate on a linear tape divided into a countably infinite number of adjacent squares. But one can also think of Turing machines that operate on different supports. For example, we can let a Turing machine work on an infinite checkerboard or, more generally, on some n-dimensional infinite array. I call an arbitrary support on which a Turing machine can operate a pattern field. Depending on the pattern field F we choose, we in fact obtain different concepts of computability. At the end of this chapter (section 6), I will thus propose a new definition of a computational system (a computational system on pattern field F) that takes into account the relativity of the concept of Turing computability. If F is a doubly infinite tape, however, computational systems on F reduce to computational systems. Turing (1965) presented his machines as an idealization of a human being that transforms symbols by means of a specified set of rules. Turing based his analysis on four hypotheses: 1. The capacity to recognize, transform, and memorize symbols and rules is finite. It thus follows that any transformation of a complex symbol must always be reduced to a series of simpler transformations. These operations on elementary symbols are of three types: recognizing a symbol, replacing a symbol, and shifting the attention to a symbol that is contiguous to the symbol which has been considered earlier. 2. The series of elementary operations that are in fact executed is determined by three factors: first, the subject’s mental state at a given time; second, the symbol which the subject considers at that time; third, a rule chosen from a finite number of alternatives.

1983 ◽  
Vol 48 (2) ◽  
pp. 356-368 ◽  
Author(s):  
Stephen G. Simpson ◽  
Galen Weitkamp

We say that a set A of reals is recursive in a real y together with a set B of reals if one can imagine a computing machine with an ability to perform a countably infinite sequence of program steps in finite time and with oracles for B and y so that decides membership in A for any real x input to by way of an oracle for x. We write A ≤ yB. A precise definition of this notion of recursion was first considered in Kleene [9]. In the notation of that paper, A ≤yB if there is an integer e so that χA(x) = {e}(x y, χB, 2E). Here χA is the characteristic function of A. Thus Kleene would say that A is recursive in (y, B, 2E), where 2E is the existential integer quantifier.Gandy [5] observes that the halting problem for infinitary machines such as , as in the case of Turing machines, gives rise to a jump operator for higher type recursion. Thus given a set B of reals, the superjump B′ of B is defined to be the set of all triples 〈e, x, y〉 such that the eth machine with oracles for y and B eventually halts when given input x. A set A is said to be semirecursive in y together with B if for some integer e, A is the cross section {x: 〈e, x, y 〉 ∈ B′}. In Kleene [9] it is demonstrated that a set A is semirecursive in y alone if and only if it is


2021 ◽  
Vol 26 (2) ◽  
pp. 23-37
Author(s):  
I.F. Mikhailov ◽  

Social and cognitive sciences have always faced the choice: either to meet the methodologi- cal standards given by successful natural sciences or to rely on their own. Talking about the conversion of knowledge into technology, the second way did not bring great success. The first way implies two alternative opportunities: reductionism or discovery of proprietary general laws. None of these chances have been realized with any satisfactory results, too. Methodological analysis shows that, to achieve significant progress in social sciences, what is missed there is not new facts or definitions but new conceptual schemes. The reason, as the author supposes, is the nomothetic approach being applied to systems with high degree of complexity and hierarchy. If we assume that social structures and processes are built upon cognitive psychological structures and processes, the former inherit the distributed computational architecture of the latter. The paper analyzes various conceptions of computations in order to determine their relevance to the task of building computational social science. The author offers a “generic” definition of computations as a process carried out by a computational system if the latter is understood as a mechanism of some representation. According to the author, the computationalization of social science implies “naturalization” of computations. This requires a theory that would explain the mechanism of growing complexity and hierarchy of natural (in particular, social) computational systems. As a method for constructing such a science, a kind of reverse engineering is proposed, which is recreation of a computational algorithmic scheme of social tissue by the determination and recombination of “social primitives” – elementary operations of social interaction.


2004 ◽  
Vol 11 (2) ◽  
pp. 75-98
Author(s):  
Carlos A. P. Campani ◽  
Paulo Blauth Menezes

This work is a survey about the definition of “random sequence”. We emphasize the definition of Martin-Löf and the definition based on incompressibility (Kolmogorov complexity). Kolmogorov complexity is a profound and sofisticated theory of information and randomness based on Turing machines. These two definitions solve all the problems of the other approaches, satisfying our intuitive concept of randomness, and both are mathematically correct. Furthermore, we show the Schnorr’s approach, that includes a requisite of effectiveness (computability) in his definition. We show the relations between all definitions in a critical way. Keywords: randomness, Kolmogorov complexity, Turing machine, computability, probability.


Author(s):  
Marco Giunti

The main thesis of this chapter is that a dynamical viewpoint allows us to better understand some important foundational issues of computation theory. Effective procedures are traditionally studied from two different but complementary points of view. The first approach is concerned with individuating those numeric functions that are effectively calculable. This approach reached its systematization with the theory of the recursive functions (Gödel, Church Kleene).This theory is not directly concerned with computing devices or computations. Rather, the effective calculability of a recursive function is guaranteed by the algorithmic nature of its definition. In contrast, the second approach focuses on a family of abstract mechanisms, which are then typically used to compute or recognize numeric functions, sets of numbers, or numbers. These devices can be divided into two broad categories: automata or machines (Turing and Post), and systems of rules for symbol manipulation (Post). The mechanisms that have been studied include: a. Automata or Machines 1. gate-nets and McCulloch-Pitts nets 2. finite automata (Mealy and Moore machines) 3. push-down automata 4. stack automata 5. Turing machines 6. register machines 7. wang machines 8. cellular automata b. Systems of Rules 9. monogenic production systems in general 10. monogenic Post canonical systems 11. monogenic Post normal systems 12. tag systems. I call any device studied by computation theory a computational system. Computation theory is traditionally interested in studying the relations between each type of computational system and the others, and in establishing what class of numeric functions each type can compute. Accordingly one proves two kinds of theorem: (1) that systems of a given type emulate systems of another type (examples: Turing machines emulate register machines and cellular automata; cellular automata emulate Turing machines, etc.), and (2) that a certain type of system is complete relative to the class of the (partial) recursive functions or, in other words, that this type of system can compute all and only the (partial) recursive functions (examples of complete systems: Turing machines, register machines, cellular automata, tag systems, etc.). All different types of computational systems have much in common. Nevertheless, it is not at all clear exactly which properties these mechanisms share.


Author(s):  
Teije de Jong

AbstractIn this series of papers I attempt to provide an answer to the question how the Babylonian scholars arrived at their mathematical theory of planetary motion. Papers I and II were devoted to system A theory of the outer planets and of the planet Venus. In this third and last paper I will study system A theory of the planet Mercury. Our knowledge of the Babylonian theory of Mercury is at present based on twelve Ephemerides and seven Procedure Texts. Three computational systems of Mercury are known, all of system A. System A1 is represented by nine Ephemerides covering the years 190 BC to 100 BC and system A2 by two Ephemerides covering the years 310 to 290 BC. System A3 is known from a Procedure Text and from Text M, an Ephemeris of the last evening visibility of Mercury for the years 424 to 403 BC. From an analysis of the Babylonian observations of Mercury preserved in the Astronomical Diaries and Planetary Texts we find: (1) that dates on which Mercury reaches its stationary points are not recorded, (2) that Normal Star observations on or near dates of first and last appearance of Mercury are rare (about once every twenty observations), and (3) that about one out of every seven pairs of first and last appearances is recorded as “omitted” when Mercury remains invisible due to a combination of the low inclination of its orbit to the horizon and the attenuation by atmospheric extinction. To be able to study the way in which the Babylonian scholars constructed their system A models of Mercury from the available observational material I have created a database of synthetic observations by computing the dates and zodiacal longitudes of all first and last appearances and of all stationary points of Mercury in Babylon between 450 and 50 BC. Of the data required for the construction of an ephemeris synodic time intervals Δt can be directly derived from observed dates but zodiacal longitudes and synodic arcs Δλ must be determined in some other way. Because for Mercury positions with respect to Normal Stars can only rarely be determined at its first or last appearance I propose that the Babylonian scholars used the relation Δλ = Δt −3;39,40, which follows from the period relations, to compute synodic arcs of Mercury from the observed synodic time intervals. An additional difficulty in the construction of System A step functions is that most amplitudes are larger than the associated zone lengths so that in the computation of the longitudes of the synodic phases of Mercury quite often two zone boundaries are crossed. This complication makes it difficult to understand how the Babylonian scholars managed to construct System A models for Mercury that fitted the observations so well because it requires an excessive amount of computational effort to find the best possible step function in a complicated trial and error fitting process with four or five free parameters. To circumvent this difficulty I propose that the Babylonian scholars used an alternative more direct method to fit System A-type models to the observational data of Mercury. This alternative method is based on the fact that after three synodic intervals Mercury returns to a position in the sky which is on average only 17.4° less in longitude. Using reduced amplitudes of about 14°–25° but keeping the same zone boundaries, the computation of what I will call 3-synarc system A models of Mercury is significantly simplified. A full ephemeris of a synodic phase of Mercury can then be composed by combining three columns of longitudes computed with 3-synarc step functions, each column starting with a longitude of Mercury one synodic event apart. Confirmation that this method was indeed used by the Babylonian astronomers comes from Text M (BM 36551+), a very early ephemeris of the last appearances in the evening of Mercury from 424 to 403 BC, computed in three columns according to System A3. Based on an analysis of Text M I suggest that around 400 BC the initial approach in system A modelling of Mercury may have been directed towards choosing “nice” sexagesimal numbers for the amplitudes of the system A step functions while in the later final models, dating from around 300 BC onwards, more emphasis was put on selecting numerical values for the amplitudes such that they were related by simple ratios. The fact that different ephemeris periods were used for each of the four synodic phases of Mercury in the later models may be related to the selection of a best fitting set of System A step function amplitudes for each synodic phase.


1973 ◽  
Vol 28 (2) ◽  
pp. 206-215
Author(s):  
Hanns Ruder

Basic in the treatment of collective rotations is the definition of a body-fixed coordinate system. A kinematical method is derived to obtain the Hamiltonian of a n-body problem for a given definition of the body-fixed system. From this exact Hamiltonian, a consequent perturbation expansion in terms of the total angular momentum leads to two exact expressions: one for the collective rotational energy which has to be added to the groundstate energy in this order of perturbation and a second one for the effective inertia tensor in the groundstate. The discussion of these results leads to two criteria how to define the best body-fixed coordinate system, namely a differential equation and a variational principle. The equivalence of both is shown.


Author(s):  
Roger S. Miles

SynopsisThe holotype and only known specimen of Rhachiosteus pterygiatus Gross is partially redescribed and new restorations are given. Attention is drawn to important points in its osteology and the possible development of a cutaneous sensory system. A definition of the family Rhachiosteidsæ Stensiö is given. This family differs from all other described groups of euarthrodires in the lack of posterior lateral and posterior dorsolateral flank plates. Rhachiosteus is a pachyosteomorph brachythoracid, as defined in the text, and may be fairly closely related in some way to the (coccosteomorph) family Coccosteidsæ. There is no indication that it is closely related to any other known pachyosteomorph, or to other groups of arthrodires, such as the Rhenanida and Ptyctodontida, in which there are no posterior flank plates.


10.29007/39jj ◽  
2018 ◽  
Author(s):  
Peter Wegner ◽  
Eugene Eberbach ◽  
Mark Burgin

In the paper we prove in a new and simple way that Interactionmachines are more powerful than Turing machines. To do thatwe extend the definition of Interaction machines to multiple interactivecomponents, where each component may perform simple computation.The emerging expressiveness is due to the power of interaction and allowsto accept languages not accepted by Turing machines. The mainresult that Interaction machines can accept arbitrary languages over agiven alphabet sheds a new light to the power of interaction. Despite ofthat we do not claim that Interaction machines are complete. We claimthat a complete theory of computer science cannot exist and especially,Turing machines or Interaction machines cannot be a complete model ofcomputation. However complete models of computation may and shouldbe approximated indefinitely and our contribution presents one of suchattempts.


Sign in / Sign up

Export Citation Format

Share Document