Introduction

Author(s):  
Craig M. Bethke

As geochemists, we frequently need to describe the chemical states of natural waters, including how dissolved mass is distributed among aqueous species, and to understand how such waters will react with minerals, gases, and fluids of the Earth's crust and hydrosphere. We can readily undertake such tasks when they involve simple chemical systems, in which the relatively few reactions likely to occur can be anticipated through experience and evaluated by hand calculation. As we encounter more complex problems, we must rely increasingly on quantitative models of solution chemistry and irreversible reaction to find solutions. The field of geochemical modeling has grown rapidly since the early 1960s, when the first attempt was made to predict by hand calculation the concentrations of dissolved species in seawater. Today's challenges might be addressed by using computer programs to trace many thousands of reactions in order, for example, to predict the solubility and mobility of forty or more elements in buried radioactive waste. Geochemists now use quantitative models to understand sediment diagenesis and hydrothermal alteration, explore for ore deposits, determine which contaminants will migrate from mine tailings and toxic waste sites, predict scaling in geothermal wells and the outcome of steam-flooding oil reservoirs, solve kinetic rate equations, manage injection wells, evaluate laboratory experiments, and study acid rain, among many examples. Teachers let their students use these models to learn about geochemistry by experiment and experience. Many hundreds of scholarly articles have been written on the modeling of geochemical systems, giving mathematical, geochemical, mineralogical, and practical perspectives on modeling techniques. Dozens of computer programs, each with its own special abilities and prejudices, have been developed (and laboriously debugged) to analyze various classes of geochemical problems. In this book, I attempt to treat geochemical modeling as an integrated subject, progressing from the theoretical foundations and computational concerns to the ways in which models can be applied in practice. In doing so, I hope to convey, by principle and by example, the nature of modeling and the results and uncertainties that can be expected. Hollywood may never make a movie about geochemical modeling, but the field has its roots in top-secret efforts to formulate rocket fuels in the 1940s and 1950s.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3251
Author(s):  
Tomasz Sliwa ◽  
Aneta Sapińska-Śliwa ◽  
Andrzej Gonet ◽  
Tomasz Kowalski ◽  
Anna Sojczyńska

Geothermal energy can be useful after extraction from geothermal wells, borehole heat exchangers and/or natural sources. Types of geothermal boreholes are geothermal wells (for geothermal water production and injection) and borehole heat exchangers (for heat exchange with the ground without mass transfer). The purpose of geothermal production wells is to harvest the geothermal water present in the aquifer. They often involve a pumping chamber. Geothermal injection wells are used for injecting back the produced geothermal water into the aquifer, having harvested the energy contained within. The paper presents the parameters of geothermal boreholes in Poland (geothermal wells and borehole heat exchangers). The definitions of geothermal boreholes, geothermal wells and borehole heat exchangers were ordered. The dates of construction, depth, purposes, spatial orientation, materials used in the construction of geothermal boreholes for casing pipes, method of water production and type of closure for the boreholes are presented. Additionally, production boreholes are presented along with their efficiency and the temperature of produced water measured at the head. Borehole heat exchangers of different designs are presented in the paper. Only 19 boreholes were created at the Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Krakow; however, it is a globally unique collection of borehole heat exchangers, each of which has a different design for identical geological conditions: heat exchanger pipe configuration, seal/filling and shank spacing are variable. Using these boreholes, the operating parameters for different designs are tested. The laboratory system is also used to provide heat and cold for two university buildings. Two coefficients, which separately characterize geothermal boreholes (wells and borehole heat exchangers) are described in the paper.


Chemosphere ◽  
2020 ◽  
Vol 254 ◽  
pp. 126696 ◽  
Author(s):  
I. Fuoco ◽  
A. Figoli ◽  
A. Criscuoli ◽  
G. Brozzo ◽  
R. De Rosa ◽  
...  

2021 ◽  
Author(s):  
Ilaria Fuoco ◽  
Rosanna De Rosa ◽  
Carmine Apollaro

<p>Arsenic (As) is a toxic element present in different natural systems. The aqueous As species and their concentrations in natural waters depend on a variety of parameters, including the presence of natural source and the local geochemical conditions. The primary source of As in natural waters is the oxidation of mineral sulphides like arsenopyrite (FeAsS) and As-rich pyrite (FeS<sub>2</sub>) [1]. The trivalent iron (Fe<sup>3+</sup>) can act as oxidant for pyrite oxidative dissolution together with dissolved oxygen.In this work the attention is focused in As- contaminated area of the Calabria Region (Southern Italy). The high arsenic concentration is a peculiar characteristic of the shallow groundwaters circulating in a limited area of the Calabria region, which represents an unexplored mineralized area. Indeed, although pyrite is widely present in the crystalline rocks, its spatial distribution is highly variable and not predicable [2]. Generally, the As content of the studied granite rocks is within the normal global range but the presence of not-surfacing, hydrothermally-altered granites, could be the cause of As contamination in limited areas.  In order to explain the As-rich groundwaters occurring into crystalline aquifer, a reaction path modelling of granite dissolution was performed by using EQ3/6 software package version 8a.  The dissolving granite was considered to be constituted by quartz, two types of plagioclase (representing the rim and the core of the mineral), K-feldspar, biotite, muscovite, chlorite, epidote, fluorapatite and pyrite.  The considered value of pyrite content and its As concentration fall within the global estimations [3]. Two simulations were performed allowing the precipitation of moganite, gibbsite, kaolinite, illite-py and the calcite-rich solid solution of trigonal carbonate. Moreover, two oxy-hydroxide solid solutions composed of amorphous Fe(OH)<sub>3 </sub>- amorphous ferric arsenate and 2 lines-ferrihydrite - scorodite were precipitated in two separate runs to evaluate their effects on dissolved As. Nine water samples were used to fix the boundary conditions as well as to validate the outcomes of geochemical modeling. The arsenic concentration detected ranging from 25 to 435 µg/L. The theoretical trend involving the precipitation of amorphous Fe(OH)<sub>3</sub> is in agreement with the groundwaters richest in As, because a higher amount of pyrite is dissolved due to a greater availability of trivalent Fe in the aqueous solution, which is caused by the higher solubility of amorphous Fe(OH)<sub>3</sub> compared to 2-line ferrihydrite. The analytical data of the As-rich groundwaters, as a whole, are well explained by the performed simulations, suggesting that these processes control the release and fate of arsenic during the water-rock interaction.</p><p> </p><p>[1]. Sracek, O., Bhattacharya, P., Jacks, G., Gustafsson, J. P., & Von Brömssen, M. ,2004. Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry, 19(2), 169-180.</p><p>[2]. Bonardi G., De Vivo B., Giunta G., Lima A., Perrone V., Zuppetta A., 1982. Mineralizzazioni dell’Arco Calabro Peloritano.Ipotesi genetiche e quadro evolutivo. Boll.Soc.Geol.It. 101</p><p>[3]. Smedley, P. L., & Kinniburgh, D. G.,2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry, 17(5), 517-568.</p>


1976 ◽  
Vol 155 (3) ◽  
pp. 567-570 ◽  
Author(s):  
K J Indge ◽  
R E Childs

A schematic method for the derivation of steady-state enzyme rate equations by using the Wang algebra is described. The method is simple, easy to learn and offers a substantial decrease in analytical effort over previously published algorithms. Being essentially an algebraic procedure the method can be readily computerized. Computer programs in BASIC and ALGOL languages have been deposited as Supplementary Publication SUP 50065 (19 pages) at the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1976). 153, 5.


2006 ◽  
Vol 54 (4) ◽  
pp. 409-417 ◽  
Author(s):  
Rama Kumar Allada ◽  
Edward Peltier ◽  
Alexandra Navrotsky ◽  
William H. Casey ◽  
C. Annette Johnson ◽  
...  

2013 ◽  
Vol 85 (11) ◽  
pp. 2117-2144 ◽  
Author(s):  
Peiming Wang ◽  
Jerzy J. Kosinski ◽  
Malgorzata M. Lencka ◽  
Andrzej Anderko ◽  
Ronald D. Springer

A comprehensive thermodynamic model, referred to as the mixed-solvent electrolyte (MSE) model, has been applied to calculate phase equilibria, speciation, and other thermodynamic properties of selected systems that are of interest for understanding the chemistry of salt lakes and natural waters. In particular, solubilities and chemical speciation have been analyzed for various boron-containing systems, which represent an important subset of solution chemistry for such applications. The model has been shown to reproduce the speciation, solubility, and vapor–liquid equilibrium (VLE) data in the boric acid + water system over wide ranges of temperature and concentration. Specifically, solubilities have been accurately represented in the full concentration range of the B2O3 + H2O system (xB2O3 = 0~1), which includes H3BO3. The accuracy of the model has also been demonstrated by calculating solubilities in various aqueous borate systems, i.e., MnO + B2O3 + H2O (where M = Li, Na, Ca, Mg), and their mixtures with a chloride salt or an acid (i.e., LiCl, NaCl, HCl). The model predicts the effects of chemical speciation, temperature, and concentrations of various acid, base, and salt components on the formation of competing solid phases.


Author(s):  
A. Scholes ◽  
D. J. Slater

The analysis of the strength and stiffness of a diesel engine frame can be carried out in two parts; an analysis of the whole frame loaded by the inertia of the moving parts and an analysis of one line loaded by the explosion forces. This paper describes computer programs which have been used to make the above analyses in more detail and in less time than is possible by hand calculation. Results are given for an engine frame in which one program was used to determine the shear and bending forces on the frame and the loads on the ligaments between the various holes in the sides of the frame. Another program was used for the analysis under explosion forces; the walls were divided into a large number of elemental panels (each of side about 2 in) and the stress distribution (both direct and bending) in each of these elements was determined.


Sign in / Sign up

Export Citation Format

Share Document