High-Pressure Effects on the Structure and Phase Behavior of Model Membrane Systems

Author(s):  
Roland Winter ◽  
Anne Landwehr

Phospholipids, which provide valuable model systems for lipid membranes, display a variety of polymorphic phases, depending on their molecular structure and on environmental conditions. High hydrostatic pressure has been used as a physical parameter to study the thermodynamic properties and phase behavior of these systems. High pressure is also a characteristic feature of certain natural membrane environments. In the first part of this article, we review our recent work on the temperature- and pressure-dependent phase behavior of phospholipid systems differing in lipid conformation and headgroup structure. In the second part, we report on the determination of the (T, x, p) phase diagrams of binary phospholipid mixtures. An additional section deals with effects of incorporating ions, small amphiphilic molecules, and steroids into the bilayer on the experimental temperature- and pressure-dependent phase behavior of lipid systems. Finally, we discuss lamellar to nonlamellar thermotropic and barotropic phase transformations, which occur for a number of lipids, such as phosphatidylethanolamines, monoacylglycerides, and lipid mixtures. It has been suggested that nonlamellar lipid structures might play an important role as transient and local intermediates in a number of biochemical processes. High-pressure smallangle x-ray (SAXS) and neutron (SANS) scattering, differential scanning calorimetry (DSC), high-pressure differential thermal analysis (DTA), and p, V, T measurements have been used as experimental methods for the investigation of these systems. Lipid bilayer dispersions, in particular the phosphatidylcholines and phosphatidylethanolamines, are the workhorses for the investigation of biophysical properties of membrane lipids because they constitute the basic structural component of biological membranes. They exhibit a rich lyotropic and thermotropic phase behavior (Cevc & Marsh, 1987; Marsh, 1991; Yeagle, 1992). Most fully hydrated saturated phospholipid bilayers exhibit two principal thermotropic lamellar phase transitions, corresponding to a gel to gel (Lβ′–Pβ′) transition and a gel to liquid-crystalline (Pβ′–Lα) main transition at a temperature Tm. In the fluid-like La phase, the hydrocarbon chains of the lipid bilayers are conformationally disordered, whereas in the gel phases the hydrocarbon chains are more extended and relatively ordered.

2019 ◽  
Vol 21 (34) ◽  
pp. 18533-18540 ◽  
Author(s):  
Magiliny Manisegaran ◽  
Steffen Bornemann ◽  
Irena Kiesel ◽  
Roland Winter

The deep-sea osmolyte TMAO does not only stabilize proteins against high pressure, it affects also the fluidity and lateral organization of membranes.


Author(s):  
Roland Winter ◽  
C. Czeslik

Lipid systems, which provide valuable model systems for biological membranes, display a variety of polymorphic phases, depending on their molecular structure and environmental conditions. By use of X-ray and neutron diffraction the temperature- and pressure-dependent structure and phase behavior of lipid systems, differing in chain configuration and headgroup structure, have been studied. Besides lamellar phases also nonlamellar phases have been investigated. Hydrostatic pressure has been used as a physical parameter for studying the stability and energetics of lyotropic lipid mesophases, but also because high pressure is an important feature of certain natural membrane environments (e.g., marine biotopes) and because the high pressure phase behavior of biomolecules is of biotechnological interest (e.g., high pressure food processing). We demonstrate that temperature and pressure have noncongruent effects on the structural and phase behavior. By using the pressure-jump relaxation technique in combination with time-resolved synchrotron X-ray diffraction, the kinetics of different lipid phase transformations was also investigated. The time constants for completion of the transitions depend on the direction of the transition, the symmetry and topology of the structures involved, and also on the pressure-jump amplitude. In addition, the effect of incorporating ions, steroids and polypeptides into bilayers on the temperature- and pressure-dependent phase behavior of the lipid systems is discussed.


Author(s):  
Claude Balny

In a detailed study of an enzyme reaction pathway, a measured composite rate constant, for example, kcat, can be interpreted in ways that lead to ambiguous conclusions. Two conditions must be met to solve this problem: (1) an elementary rate constant must be measured, and (2) a maximum number of physical-chemical parameters must be used to perturb the system under study. To gain access to elementary rate constants, cryobaroenzymology and/or transient methods, such as stopped-flow and flow-quench kinetics, can be used. Both perturbation and kinetics measurements performed under either high pressure or low temperatures can then be used to probe the thermodynamics of the interconversion of two successive intermediates to obtain parameters such as ΔG‡, ΔS‡, ΔH‡, and ΔV‡ The interdependence of the two major variables, namely temperature and pressure, is presented in this article, in which the role of organic cosolvents is considered as a third variable. During catalytic reactions, enzymes undergo a number of conformational changes related to their dynamic structural flexibility. This appears as a succession of different steps. A complete study of such processes, which generally are very rapid, consists of the exploration of the properties of these steps, including thermodynamic features obtained by the action of temperature and pressure. As long ago as 1950, Laidler (1950) formulated the first theoretical basis for explaining the responses of enzymes to high hydrostatic pressures. Chemists used this parameter extensively, and in the early stages of high-pressure kinetics they attempted to analyze the observed results on the basis of collision theory (Asano, 1991) or transition-state theory (Evans & Polanyi, 1935). These theories are still used to describe pressure effects on enzyme reactions. It is postulated that between two successive intermediates there is a labile transition state which governs the energetics of the reaction (Glastone et al., 1941). But we must remember that this theory was first applied only to simple homogeneous reactions in gases. For solutions, the treatment can require the introduction of other parameters such as the viscosity.


Soft Matter ◽  
2015 ◽  
Vol 11 (11) ◽  
pp. 2125-2138 ◽  
Author(s):  
Yevgeny Moskovitz ◽  
Hui Yang

Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome.


IUCrJ ◽  
2014 ◽  
Vol 1 (6) ◽  
pp. 470-477 ◽  
Author(s):  
Nicholas J. Brooks

Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.


2021 ◽  
Vol 118 (4) ◽  
pp. e2016037118
Author(s):  
Mattia I. Morandi ◽  
Monika Kluzek ◽  
Jean Wolff ◽  
André Schroder ◽  
Fabrice Thalmann ◽  
...  

Growth of plastic waste in the natural environment, and in particular in the oceans, has raised the accumulation of polystyrene and other polymeric species in eukyarotic cells to the level of a credible and systemic threat. Oligomers, the smallest products of polymer degradation or incomplete polymerization reactions, are the first species to leach out of macroscopic or nanoscopic plastic materials. However, the fundamental mechanisms of interaction between oligomers and polymers with the different cell components are yet to be elucidated. Simulations performed on lipid bilayers showed changes in membrane mechanical properties induced by polystyrene, but experimental results performed on cell membranes or on cell membrane models are still missing. We focus here on understanding how embedded styrene oligomers affect the phase behavior of model membranes using a combination of scattering, fluorescence, and calorimetric techniques. Our results show that styrene oligomers disrupt the phase behavior of lipid membranes, modifying the thermodynamics of the transition through a spatial modulation of lipid composition.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 132 ◽  
Author(s):  
Daniela Meleleo

Resveratrol, a polyphenolic molecule found in edible fruits and vegetables, shows a wide range of beneficial effects on human health, including anti-microbial, anti-inflammatory, anti-cancer, and anti-aging properties. Due to its poor water solubility and high liposome-water partition coefficient, the biomembrane seems to be the main target of resveratrol, although the mode of interaction with membrane lipids and its location within the cell membrane are still unclear. In this study, using electrophysiological measurements, we study the interaction of resveratrol with planar lipid membranes (PLMs) of different composition. We found that resveratrol incorporates into palmitoyl-oleoyl-phosphatidylcholine (POPC) and POPC:Ch PLMs and forms conductive units unlike those found in dioleoyl-phosphatidylserine (DOPS):dioleoyl-phosphatidylethanolamine (DOPE) PLMs. The variation of the biophysical parameters of PLMs in the presence of resveratrol provides information on its location within a lipid double layer, thus contributing to an understanding of its mechanism of action.


2010 ◽  
Vol 85 (7-9) ◽  
pp. 964-968 ◽  
Author(s):  
Xie Mao-lin ◽  
Luo De-li ◽  
Xian Xiao-bin ◽  
Leng Bang-yi ◽  
Chen Chang’an ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document