Effects of the deep-sea osmolyte TMAO on the temperature and pressure dependent structure and phase behavior of lipid membranes

2019 ◽  
Vol 21 (34) ◽  
pp. 18533-18540 ◽  
Author(s):  
Magiliny Manisegaran ◽  
Steffen Bornemann ◽  
Irena Kiesel ◽  
Roland Winter

The deep-sea osmolyte TMAO does not only stabilize proteins against high pressure, it affects also the fluidity and lateral organization of membranes.

Author(s):  
Roland Winter ◽  
Anne Landwehr

Phospholipids, which provide valuable model systems for lipid membranes, display a variety of polymorphic phases, depending on their molecular structure and on environmental conditions. High hydrostatic pressure has been used as a physical parameter to study the thermodynamic properties and phase behavior of these systems. High pressure is also a characteristic feature of certain natural membrane environments. In the first part of this article, we review our recent work on the temperature- and pressure-dependent phase behavior of phospholipid systems differing in lipid conformation and headgroup structure. In the second part, we report on the determination of the (T, x, p) phase diagrams of binary phospholipid mixtures. An additional section deals with effects of incorporating ions, small amphiphilic molecules, and steroids into the bilayer on the experimental temperature- and pressure-dependent phase behavior of lipid systems. Finally, we discuss lamellar to nonlamellar thermotropic and barotropic phase transformations, which occur for a number of lipids, such as phosphatidylethanolamines, monoacylglycerides, and lipid mixtures. It has been suggested that nonlamellar lipid structures might play an important role as transient and local intermediates in a number of biochemical processes. High-pressure smallangle x-ray (SAXS) and neutron (SANS) scattering, differential scanning calorimetry (DSC), high-pressure differential thermal analysis (DTA), and p, V, T measurements have been used as experimental methods for the investigation of these systems. Lipid bilayer dispersions, in particular the phosphatidylcholines and phosphatidylethanolamines, are the workhorses for the investigation of biophysical properties of membrane lipids because they constitute the basic structural component of biological membranes. They exhibit a rich lyotropic and thermotropic phase behavior (Cevc & Marsh, 1987; Marsh, 1991; Yeagle, 1992). Most fully hydrated saturated phospholipid bilayers exhibit two principal thermotropic lamellar phase transitions, corresponding to a gel to gel (Lβ′–Pβ′) transition and a gel to liquid-crystalline (Pβ′–Lα) main transition at a temperature Tm. In the fluid-like La phase, the hydrocarbon chains of the lipid bilayers are conformationally disordered, whereas in the gel phases the hydrocarbon chains are more extended and relatively ordered.


IUCrJ ◽  
2014 ◽  
Vol 1 (6) ◽  
pp. 470-477 ◽  
Author(s):  
Nicholas J. Brooks

Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.


Author(s):  
R. Aquino-Souza ◽  
S.J. Hawkins ◽  
P.A. Tyler

The aim of this study was to analyse the tolerance of the planktonic stages of Psammechinus miliaris to hydrostatic pressure and temperature. Embryos of Psammechinus miliaris were subjected to different combinations of pressure and temperature for 3, 6 and 12 h. The percentage of embryos at each stage and the percentage of embryos developing abnormally were measured. Larvae at the gastrula and prism stages were subjected to pressure and temperature combinations for 24 h and the larval survival was calculated measuring the percentage of swimming larvae. Both embryos and larvae could survive at greater pressures than the known adult depth limits. Larvae showed a much greater potential than embryos for surviving deeper, with approximately 100% of both gastrulae and prisms surviving up to 200 atm at 5°C. These results are similar to other shallow-water species of Echinoida. Thus larval tolerance of high pressure and low temperature may have been important for the success of this group in colonizing the deep-sea.


Author(s):  
R. Winter ◽  
W. Dzwolak

Hydrostatic pressure has been used as a physical parameter for studying the stability and energetics of biomolecular systems, such as lipid mesophases and proteins, but also because high pressure is an important feature of certain natural membrane environments and because the high–pressure phase behaviour of biomolecules is of biotechnological interest. By using spectroscopic and scattering techniques, the temperature– and pressure–dependent structure and phase behaviour of lipid systems, differing in chain configuration, headgroup structure and concentration, and proteins have been studied and are discussed. A thermodynamic approach is presented for studying the stability of proteins as a function of both temperature and pressure. The results demonstrate that combined temperature–pressure dependent studies can help delineate the free–energy landscape of proteins and hence help elucidate which features and thermodynamic parameters are essential in determining the stability of the native conformational state of proteins. We also introduce pressure as a kinetic variable. Applying the pressure jump relaxation technique in combination with time–resolved synchrotron X–ray diffraction and spectroscopic techniques, the kinetics of un/refolding of proteins has been studied. Finally, recent advances in using pressure for studying misfolding and aggregation of proteins will be discussed.


Author(s):  
Roland Winter ◽  
C. Czeslik

Lipid systems, which provide valuable model systems for biological membranes, display a variety of polymorphic phases, depending on their molecular structure and environmental conditions. By use of X-ray and neutron diffraction the temperature- and pressure-dependent structure and phase behavior of lipid systems, differing in chain configuration and headgroup structure, have been studied. Besides lamellar phases also nonlamellar phases have been investigated. Hydrostatic pressure has been used as a physical parameter for studying the stability and energetics of lyotropic lipid mesophases, but also because high pressure is an important feature of certain natural membrane environments (e.g., marine biotopes) and because the high pressure phase behavior of biomolecules is of biotechnological interest (e.g., high pressure food processing). We demonstrate that temperature and pressure have noncongruent effects on the structural and phase behavior. By using the pressure-jump relaxation technique in combination with time-resolved synchrotron X-ray diffraction, the kinetics of different lipid phase transformations was also investigated. The time constants for completion of the transitions depend on the direction of the transition, the symmetry and topology of the structures involved, and also on the pressure-jump amplitude. In addition, the effect of incorporating ions, steroids and polypeptides into bilayers on the temperature- and pressure-dependent phase behavior of the lipid systems is discussed.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Shi-Jun Wu ◽  
Can-Jun Yang ◽  
Ying Chen ◽  
Yan-Qing Xie

The cone valve plays an important role in high-pressure sealing applications. In this paper, a new high-pressure cone valve, based on the titanium alloy poppet-to-polyetheretherketone seat sealing structure, is proposed for deep-sea gas-tight water samplers. In order to study the sealing performance of the new valve, both the conforming poppet-seat contact model and the nonconforming poppet-seat contact model were evaluated. Finite element analysis based on the two models was performed and validated by experiments. The results indicate that the nonconforming poppet-seat contact model has a better sealing performance than the conforming poppet-seat contact model. The new cone valve also was applied in a gas-tight hydrothermal fluid sampler and successfully tested in a sea trial during the KNOX18RR cruise from 9 July to 12 August 2008.


2004 ◽  
Vol 70 (2) ◽  
pp. 1231-1233 ◽  
Author(s):  
Jens Kallmeyer ◽  
Antje Boetius

ABSTRACT Rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM) in hydrothermal deep-sea sediments from Guaymas Basin were measured at temperatures of 5 to 200°C and pressures of 1 × 105, 2.2 × 107, and 4.5 × 107 Pa. A maximum SR of several micromoles per cubic centimeter per day was found at between 60 and 95°C and 2.2 × 107 and 4.5 × 107 Pa. Maximal AOM was observed at 35 to 90°C but generally accounted for less than 5% of SR.


2003 ◽  
Vol 81 (1-2) ◽  
pp. 47-53 ◽  
Author(s):  
M B Helgerud ◽  
W F Waite ◽  
S H Kirby ◽  
A Nur

We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane–ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17°C in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between –20 and 15°C and 0 to 105 MPa applied piston pressure. PACS No.: 61.60Lj


2011 ◽  
Vol 236-238 ◽  
pp. 87-90
Author(s):  
Li Ying Guo

Ionic liquid, 1-(2-hydroxylethyl)-3-ethylene imidazolium chloride ([HeVIM]Cl) was synthesized and its chemical structures was examined by FTIR and 1HNMR. Fir powder was extracted with a mixture of benzene/ethanol or activated with 25% (mass fraction) NaOH under normal temperature and pressure, microwave and high pressure. Dissolution of the pretreated wood powder in [HeVIM]Cl by microwave (90°C, 400w) was studied. The results showed that the ionic liquid [HeVIM]Cl exhibited a good solubility. Wood powder pretreated with 25% NaOH under high pressure had the lowest crystallinity (2.4%) and the highest dissolution rate (21.6%).


Sign in / Sign up

Export Citation Format

Share Document