Proton and 19F NMR Spectroscopy of Pesticide Intermolecular Interactions

Author(s):  
Sharon J. Anderson

Sorption of organic pollutants by soils and sediments is one of the main chemical processes that controls pollutant migration in the environment. Information about the molecular mechanisms by which an organic pollutant interacts with other solution-phase constituents and with solid-phase sorbents would be invaluable for more accurate prediction of pollutant fate and transport and for optimal design and application of remediation procedures. Many current models and remediation strategies are based upon the “partition theory” of organic compound sorption, which predicts sorption coefficients from properties such as water solubility or octanol-water partition coefficients. Partition theory is well suited for nonpolar hydrocarbons but may not be appropriate for pesticides with electrophilic or weakly acidic or basic substituents, which may interact with soils or organic matter through specific interactions such as hydrogen bonding or charge-transfer complexes. If a pesticide can form hydrogen bonds or a charge-transfer complex with a sorbent, sorption may be greater than in the absence of specific interactions. Nuclear magnetic resonance (NMR) spectroscopy is well suited for the study of pesticide-solution or pesticide-sorbent interactions because NMR is an element-specific method that is extremely sensitive to the electron density (shielding) near the nucleus of interest. Consequently, solution-state NMR can distinguish between closely related functional groups and can provide information about intermolecular interactions. All nuclei with nonzero nuclear spin quantum number can be studied by NMR spectroscopy. Of the more than 100 NMR-active nuclei, 1H and 19F are the easiest to study because both have natural abundances near 100% and greater NMR sensitivity than any other nuclei. In addition, both 1H and 19F have zero quadrupolar moments, which means that sharp, well resolved NMR peaks can be obtained, at least in homogeneous solutions. Proton NMR is well suited for elucidating molecular interactions in solution but cannot be used to study interactions between pesticides and heterogeneous sorbents such as soils, humic acid, or even cell extracts, since protons in the sorbent generally produce broad peaks that mask the NMR peaks from the solute or sorbate of interest. In contrast, 19F NMR can be used to study interactions between fluorine-containing molecules and heterogeneous sorbents because the fluorine concentration in most natural sorbents is negligible.

1998 ◽  
Vol 39 (39) ◽  
pp. 7193-7196 ◽  
Author(s):  
Anette Svensson ◽  
Karl-Erik Bergquist ◽  
Tomas Fex ◽  
Jan Kihlberg

Tetrahedron ◽  
2003 ◽  
Vol 59 (21) ◽  
pp. 3719-3727 ◽  
Author(s):  
Isabelle Le Roy ◽  
Dominique Mouysset ◽  
Serge Mignani ◽  
Marc Vuilhorgne ◽  
Lucien Stella

2019 ◽  
Vol 19 (25) ◽  
pp. 2271-2282 ◽  
Author(s):  
Bo Lu ◽  
Xue-Hui Liu ◽  
Si-Ming Liao ◽  
Zhi-Long Lu ◽  
Dong Chen ◽  
...  

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


1983 ◽  
Vol 48 (7) ◽  
pp. 1864-1866
Author(s):  
Jan Bartoň ◽  
Ivan Kmínek

2,7-Dimethyl-2,6-octadiene is formed in the catalytic solution for the dimerization of 2-methyl-1,3-butadiene to β-myrcene (3-methylene-7-methyl-1,6-octadiene), as revealed by mass spectrometry and 13C NMR spectroscopy. Visual observations together with the results of gas chromatographic analysis of the catalytic solution suggest that the formation of 2,7-dimethyl-2,6-octadiene is associated with the transition of the alkali metal (sodium) from the solid phase into the solution. A reaction pathway is suggested accounting for the formation of 2,7-dimethyl-2,6-octadiene in the system.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2449
Author(s):  
Martyn Dobinson ◽  
Philip Hodge ◽  
Trevor Wear

The capping of “living” poly(methyl methacrylate) (PMMA) and “living” polystyrene (PS), both prepared by the RAFT technique, with various olefins was screened using 19F-NMR spectroscopy. The capping of “living” PMMA with a labeled stilbene was as high as 63% and with certain cinnamate esters was essentially quantitative, but the capping of “living” polystyrene with all the olefins investigated was generally poor.


Sign in / Sign up

Export Citation Format

Share Document